Journal of Catalysis 369 (2019) 372-381

Contents lists available at ScienceDirect

Journal of Catalysis

journal homepage: www.elsevier.com/locate/jcat

Quantitative study of the NH_3 -SCR pathway and the active site distribution over CeWO_x at low temperatures

^a State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China ^b Editorial Office of Journal of Environmental Sciences, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China ^c Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China ^d University of Chinese Academy of Sciences, Beijing 100049, China

ARTICLE INFO

Article history: Received 15 April 2018 Revised 4 August 2018 Accepted 25 November 2018

Keywords: Quantitative characterization Mechanism CeWO_x Active sites NH₃-SCR H₂O

ABSTRACT

The reaction and adsorption amounts of NO, NO₂, and NH₃ and the reaction pathway of the selective catalytic reduction of NO_x with NH₃ (NH₃-SCR) at low temperatures in the absence and presence of H₂O on CeWO_x were quantitatively determined by a transient response method (TRM). The distribution of the active sites was quantitatively determined based on the results of TRM, X-ray photoelectron spectroscopy and temperature programmed desorption. NO_x adsorbed on O vacancies and oxidized Ce sites, with surface concentrations of 40–63 and 20 µmol g⁻¹ respectively, while NH₃ adsorbed on [Ce⁴⁺]-OH and W species, at 61–70 and 90–99 µmol g⁻¹ respectively. Both the reaction between NO and NH₄NO₃ to form N₂, H₂O and NO₂, and reaction between nitrite and NH₃ to form N₂ and H₂O were present. H₂O weakened NH₃ adsorption, decreased the adsorption amount at 150 °C, and inhibited the reaction between NO and NH₄NO₃/adsorbed NH₃, impeding NH₃-SCR on CeWO_x.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Nitrogen oxides (NO_x) emitted from stationary and mobile sources cause a series of environmental problems, e.g., photochemical smog, acid rain, and haze. In particular, the removal of NO_x from diesel engine exhaust attracts much attention. Academic and industrial research progress confirms that the selective catalytic reduction of NO_x with NH₃ (NH₃-SCR) is an effective method for abatement of NO_x [1]. To this aim, therefore, many efforts have been devoted to developing efficient catalysts, e.g., V-based catalysts [2], Fe- and Cu-based zeolites [3-7], Fe- and Ce-containing oxides [8–11], or discovering new ways to accelerate the reaction [12,13]. Studying the SCR mechanism is also important for the design and preparation of new catalysts. However, for these catalysts, the mechanism of NH₃-SCR has often been proposed based on qualitative studies using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) [14–16], transient response method (TRM) [17,18] or density functional theory (DFT) calculations [19]. Grossale et al. [20] applied the traditional

¹ Present address: Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. TRM in quantifying the reactants and products and investigating the mechanism of the fast SCR reaction on Fe-ZSM-5 at the reaction temperatures. However, their study did not involve the adsorption steps or the distribution of the surface active components on the catalyst. So far, very few reports have quantitatively studied the distribution of the active sites of the NH₃-SCR catalysts, although quantitative determination of pathways and active sites can be of great importance, since solid evidence can be provided.

Ce-W mixed oxide catalysts have been proved to be effective for the NH₃-SCR reactions. Li's group [21] prepared a CeO₂-WO₃ catalyst, which was effective in a wide temperature range from 200 to 450 °C under a gas hourly space velocity (GHSV) 47,000 h^{-1} . The active sites for NH₃ adsorption on CeO₂-WO₃ were identified using in situ IR, Raman spectroscopy, temperature programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) [22]. Shan et al. [23] developed a Ce-W oxide (CeWO_x) catalyst, which can remove NO completely over a wide temperature range (250-425 °C) even under the high gas hourly space velocity of 500,000 h^{-1} . Moreover, this catalyst can reduce the NO_x emission from heavy duty diesel engines sufficiently to meet the Euro V limit [24]. Using in situ DRIFT study, two reaction pathways, i.e., "the NH₄NO₃ path" (NO reacted with NH₄NO₃ formed by the reaction between the surface nitrates and NH₃, emitting N₂, NO₂ and H₂O) and "the nitrate path" (NO reacted with the surface nitrates to form nitrites, which would react with NH_3 to form N_2 and

JOURNAL OF CATALYSIS

 $[\]ast\,$ Corresponding author at: P.O. Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, China.

E-mail address: honghe@rcees.ac.cn (H. He).

H₂O), were found to be present during the standard and fast SCR reactions on CeWO_x under low temperatures [15]. Until now, the reaction mechanism of NH₃-SCR on CeWO_x was studied only by the qualitative study method. Also, the active site distribution on the Ce-W mixed oxides, especially on our CeWO_x catalyst that was excellent under a high GHSV, is still unclear, while understanding the active site distribution can guide the design of new effective NH₃-SCR catalysts.

Water vapor is present in the combustion exhaust during practical application. It is believed that a competitive adsorption between H_2O and the reactants (NH_3/NO_x) is present on the surface of the NH₃-SCR catalysts, e.g., Fe_{0.75}Mn_{0.25}TiO_x, CeMo_xZr_yO_z [25,26]. H₂O was found to play a negative role on NH₃-SCR over CeWO_x, shifting the NO_x conversion curve $\sim 15 \,^{\circ}\text{C}$ to high temperature [23], and it was inferred that this phenomenon could be attributed to the blocking of the active sites by H₂O. On the contrary, Huang et al. [27] suggested that H₂O could not reduce the adsorption of NO and NH₃ over V₂O₅/AC, but instead, the NH₃ adsorption was promoted. On this V₂O₅/AC, H₂O prohibited the reaction between the Lewis NH₃ species and NO. It seems that the effect of H₂O on the reactant (NH_3/NO_x) adsorption and the NH₃-SCR reaction mechanism depends on the nature of active metal oxides. To date, quantitative studies on the effect of H₂O vapor on the NO_x and NH₃ adsorption and the NH₃-SCR reaction mechanism at low temperatures over Ce-W mixed oxides are still lacking.

Herein, we applied TRM for quantitatively determining the NH₃-SCR reaction mechanism at low temperatures and the distribution of different active sites on CeWO_x, simultaneously. By using TRM, the reaction pathway of NH₃-SCR on CeWO_x at low temperatures 30 and 150 °C was quantitatively determined according to the quantification of the reactants and the products, and simultaneously, the distribution of the active sites on the highly effective and promising CeWO_x catalyst was clarified by combining the results of TRM, XPS and TPR. Also, the effect of H₂O on the amount of the reactant adsorption and the NH₃-SCR reaction mechanism at low temperatures was studied.

2. Experimental

2.1. Catalyst synthesis

CeWO_x mixed oxide catalyst was prepared by a homogeneous precipitation method [23]. In brief, a mixed aqueous solution containing cerium nitrate (Ce(NO₃)₃), ammonium tungstate ((NH₄)₁₀-W₁₂O₄₁), oxalic acid (H₂C₂O₄), and urea was vigorously stirred, and then heated at 90 °C for 12 h. After filtration, washing, and drying at 100 °C, the as-prepared sample was calcined at 500 °C for 5 h. The Ce/W molar ratio in CeWO_x was 1:1.

2.2. Determination of the reaction/adsorption amount

The adsorption/reaction amounts of reactants were quantitatively determined by TRM (as described in Section S1.1 in Supporting Information) at low temperatures, i.e., the reaction temperature 150 °C and the room temperature 30 °C. Before the adsorption experiments, $CeWO_x$ was pretreated at 400 °C for 0.5 h by 20 vol% O_2/N_2 , and then cooled down to 30 or 150 °C. Then the reactor was by-passed and the gas composition for the adsorption experiment was measured. The effluent gas was analyzed by an online NEXUS 670-FTIR spectrometer, and all spectra were recorded in a single scan with a time interval of ~8 s between scans. When the gas composition became stable, the gas was introduced into the reactor, and a curve of effluent gas composition vs. time was recorded. The adsorption figure was a function of the concentration vs. adsorption time. The amount of the adsorbed reactant can be calculated according to the ratio of the peak area to the whole area:

$$N_{ads} = rac{A_{ads}}{A_{all}} imes N_{all}$$

where N_{ads} and N_{all} denote the number of adsorbed molecules and the overall number of molecules that were introduced into the reactor, and A_{ads} and A_{all} are the peak areas produced by N_{ads} and N_{all} , respectively.

The peaks ranging from 1911.13 to 1913.72, 1643.36 to 1644.63, 2178.72 to 2177.63, and 1120.12 to 1123.86 cm⁻¹ were used for determination of the concentration of NO, NO₂, N₂O and NH₃, respectively. No overlap of NO_x and NH₃ was observed at these peak positions, as shown in Fig. S2. The peaks of N₂O₃, N₂O₄, and N₂O₅ were reported to show up at ~1830 cm⁻¹ [28,29], 1750 cm⁻¹ [29,30] and 1728 cm⁻¹ [29], respectively. Although an NO/NO₂ mixture would mask some of the N₂O₃ features [30], the peak at 1829 cm⁻¹ was not significantly overlapped by NO₂, and could be observed when the spectra of N₂O, NO₂, and N₂O₄ were digitally subtracted [28]. No peaks at 1830, 1750 or 1738 cm⁻¹ were found during adsorption or reaction in this study. The correlation between the concentration of NO_x or NH₃ and the absorbance was determined using the Lamber-Beer Law:

$$A = abc$$

where A is the absorbance, a is the extinction coefficient, b is the adsorption layer thickness, and c is the concentration.

First, different fixed amounts of NO_x or NH_3 were introduced into the gas flow cell of the FTIR (Fourier transform infrared spectroscopy) instrument, and then different FTIR spectra and A values can be obtained at the steady state. The value of ab was determined by plotting A vs. c, and the slope was ab. Once the value of ab is obtained, the value of c can be calculated when A is acquired. During the adsorption process, the value of A can be obtained using FTIR. Then, the amounts of NO_x and NH_3 (c) at different time during the adsorption or reaction can be calculated according to Lamber-Beer Law. The absorbance in the spectra was measured at a resolution of 0.5 cm^{-1} , and the spectra were not treated with smoothing or noise-removing algorithm, indicating that the deviation from Beer's law might not be present [31].

The adsorption gas compositions were 500 ppm NH₃ or 500 ppm NO or 500 ppm NO₂ and N₂ balance at a total flow rate 500 mL min⁻¹. 100 mg CeWO_x (40–60 mesh) was loaded into the reactor. The temperature of the catalyst was detected by a thermocouple, and the room temperature was ~30 °C. Each adsorption experiment was duplicated at least once. Especially when the adsorption amount was less than 30 µmol g⁻¹, e.g., for NO adsorption, the experiment was conducted for more than 3 times. Then, an average value with an uncertainty limit was calculated according to the values obtained.

After being treated by NH₃ or NO₂, the CeWO_x catalyst was treated in N₂ flow, and some weakly adsorbed NH₃ or NO₂ was removed by N₂ flow. In order to quantify the amount of weakly adsorbed NH₃ or NO₂ that can be removed, NH₃ or NO₂ was introduced onto the surface of CeWO_x again, and the adsorption amount during the second adsorption process was equal to the amount that could be removed by N₂.

Blank experiments were also carried out. In these experiments, no catalyst was loaded in the reactor, and the experimental procedure was the same as that introduced above. It was found that the consumption amounts of NO, NO₂, and NH₃ were $\sim 0 \text{ mol g}^{-1}$ at both 30 and 150 °C, as shown in Fig. S3.

Temperature programmed surface reaction (TPSR) was performed on the pretreated CeWO_x in 500 ppm NO/N₂ or 500 ppm NO/N₂ + 2 vol% H₂O, with a heating rate of 10 °C min⁻¹. The gas flow rate was 500 mL min⁻¹, and the amount of catalyst was 100 mg (40–60 mesh). The effluent gas was analyzed by an online NEXUS 670-FTIR spectrometer, and the spectra were recorded in a single scan with a time interval of \sim 8 s between scans.

3. Results and discussion

3.1. NO₂ adsorption

First, introducing NO₂ onto the surface of fresh CeWO_x resulted in a drastic decrease in the NO₂ concentration (~100 µmol g⁻¹), accompanied by an increase in the NO concentration (~40 µmol g⁻¹) at 30 °C (Fig. 1). No N₂O, N₂O₃, N₂O₄, or N₂O₅ was observed. The molar ratio between the consumed NO₂ and the formed NO was 2.625:1. It was reported that three NO₂ molecules could form one NO molecule (NO₂:NO = 3:1) on zeolites [17] or on TiO₂ [32], while other researchers found that during NO₂ disproportionation reaction, two NO₂ molecules formed one NO molecule (NO₂:NO = 2:1) [33]. However, the ratio of NO₂ consumption to NO formation was <3:1 but >2:1 in the present study. Therefore, it is reasonable to conclude that Eqs. (1) [34], (4) and (5) took place [17]:

$$NO_2 + NO_2 + [Ce^{3+}] - \Box \leftrightarrow [Ce^{4+}] - ONO_2 + NO$$
(1)

where $[Ce^{3+}]-\Box$ is an O vacancy Ce site, the presence of which was observed in our previous study using XPS [23]. Eq. (1) is the NO₂ disproportionation reaction, and might be a combination of the following equations:

Fig. 1. 500 ppm NO₂ adsorption over CeWO_x at 30 and 150 °C.

$$NO_2 + [Ce^{3+}] - \Box \leftrightarrow [Ce^{4+}] - ONO$$
(2)

$$[Ce^{4+}]-ONO \leftrightarrow NO + [Ce^{4+}]-O \tag{3}$$

$$[\operatorname{Ce}^{4+}]-\operatorname{O}+\operatorname{NO}_2 \to [\operatorname{Ce}^{4+}]-\operatorname{ONO}_2 \tag{4}$$

It is difficult to detect the nitrite species ($[Ce^{4+}]$ -ONO) since the nitrites are highly reactive and are inclined to desorb from the surface of CeWO_x [15]. Similarly, Kijlstra et al. [35] found that nitrite species formed on MnO_x/Al₂O₃ were less thermodynamically stable than the nitrate species. Thus, the equations above were derived based on speculation.

Mutual transformation takes place between monodentate, bidentate and bridging nitrates (([$Ce^{4+}]-O_2 = NO$) [15] (Eq. (S1)). Eqs. (1) and (S1) show that the two NO₂ molecules can react on CeWO_x to form one surface nitrate and one NO molecule.

$$[Ce^{4+}]-O + NO_2 \to [Ce^{4+}]-ONO_2 \tag{4}$$

$$[Ce^{4+}]_2 - O_2 + NO_2 \rightarrow [Ce^{4+}] - ONO_2 + [Ce^{4+}] - O$$
(5)

where $[Ce^{4+}]$ -O and $[Ce^{4+}]_2$ -O₂ denote a lattice oxygen and an adsorbed oxygen, respectively.

Eqs. (4) and (5) are the NO_2 adsorption. In the case of NO_2 adsorption (Eqs. (4) and (5)), no NO molecules can be detected in the outlet gas, and all consumed NO_2 forms surface nitrates.

The amount of NO_2 consumed to form NO by NO_2 disproportionation (Eq. (1)) was:

$$N_{NO2-equation(1)} = 2N_{NO \ formation} = 2 \times 40 \ \mu mol \ g^{-1} = 80 \ \mu mol \ g^{-1}$$

where N denotes the number of molecules. The amounts of NO₂ consumed by NO₂ adsorption (Eqs. (4) and (5)) and the formed surface nitrate were calculated to be 20 and 60 µmol g⁻¹, respectively (Section S2.1.2 in Supporting Information), indicating that at 30 °C, the surface nitrates formed by NO₂ adsorption on [Ce³⁺]- \Box and oxidized Ce sites were 40 and 20 µmol g⁻¹, as shown in the Scheme 1.

At 150 °C, the amounts of NO₂ consumption and NO evolution were 35 and 17 μ mol g⁻¹, respectively, lower than those at 30 °C, indicating that some weakly adsorbed species were absent. The amount of NO₂ consumption decreased at 150 °C, possibly due to the acceleration of the reverse reaction of NO₂ disproportionation (Eq. (1)). Since the peaks of monodentate nitrates (1527 and 1271 cm⁻¹) were lower at 150 °C in comparison with those at 30 °C according to DRIFTS results (Fig. S4), it can be concluded that the weakly adsorbed species were partly monodentate nitrates [16]. The molar ratio of NO₂/NO was 2:1 at 150 °C. Since the ratio of NO₂ consumption to NO emission during NO₂ disproportionation (Eq. (1)) is 2:1, whereas that during NO₂ adsorption (Eqs. (4) and (5)) is 1:0, it can be concluded that only NO₂ disproportiona-

Scheme 1. Surface nitrates formed by NO₂ adsorption on $[Ce^{3+}]$ - \Box and oxidized Ce sites at 30 °C.

tion (Eq. (1)) occurred at 150 °C, and NO₂ adsorbed following Eqs. (1) and (S1) at 150 °C. The absence of NO₂ adsorption (Eqs. (4) and (5)) at 150 °C suggests that the nitrates formed on oxidized Ce sites ($[Ce^{4+}]-O$ and $[Ce^{4+}]_2-O_2$) by NO₂ adsorption were weakly adsorbed nitrates (20 µmol g⁻¹), since the weakly adsorbed nitrates would desorb from the CeWO_x surface to form NO₂ at a higher temperature. Thus, $[Ce^{3+}]-\Box$ was the site for nitrate formation during the SCR reaction, whereas $[Ce^{4+}]-O$ and $[Ce^{4+}]_2-O_2$ did not participate in the formation of nitrates.

3.2. Reaction between NO gas and the adsorbed NO₂

After N₂ purge, NO gas was introduced onto the surface of CeWO_x saturated with the nitrates formed by NO₂ adsorption at 30 and 150 °C. The amount of weakly adsorbed NO₂ removed by N₂ flow was negligible (Fig. S5). At 30 °C, upon feeding NO into the reactor, the amount of NO decreased, with the evolution of NO₂ (Fig. 2a). To exclude the possibility of NO₂ production by NO oxidation, NO adsorption on fresh CeWO_x was also conducted, and no NO₂ was evolved (Fig. 2b). It is obvious that the amount of surface nitrates formed by NO₂ (60 µmol g⁻¹) was ~6 times of that formed by NO in terms of amount. Analogously, Sivachandiran et al. [32] reported that no significant adsorption of NO was observed on TiO₂, whereas about 2.2–12 µmol m⁻² NO₂ was consumed during the adsorption process. Seen from Fig. 2a, the amount of NO adsorbed (10 µmol g⁻¹) was smaller than that on NO₂-presorbed CeWO_x (25 µmol g⁻¹), indicating that reaction between NO and the nitrate species to form NO₂ gas was present.

Fig. 2. 500 ppm NO adsorption over CeWO_x pre-treated in 500 ppm NO_2 in N_2 (a) and over fresh CeWO_x (b) at 30 and 150 $^\circ$ C.

According to the DRIFT results in our previous study [15], monodentate, bidentate, and bridging nitrates were found to be present during NO adsorption on CeWO_x at 150 °C. Tang et al. [36] reported the presence of the transformation between different nitrates on MnO_x/TiO_2 . Therefore, it can be suggested that nitrate formation (Eqs. (6) and (7)) and the transformation among the monodentate, bidentate and bridging nitrates (Eq. (S1)) were present during NO adsorption:

$$NO + 2[Ce^{4+}] - O \leftrightarrow [Ce^{4+}] - 0NO + [Ce^{4+}] - O \leftrightarrow ([Ce^{4+}] - 0)_2 = NO$$
(6)

NO +
$$[Ce^{4+}]_2$$
-O₂ ↔ $([Ce^{4+}]-O)_2$ = NO (7)

Quantitative analysis showed that the ratio between the NO_2 production (50 µmol g⁻¹) and NO consumption (25 µmol g⁻¹) was 2:1, and hence, Eq. (8) can be suggested:

$$NO + [Ce^{4+}]-ONO_2 \leftrightarrow NO_2 + [Ce^{4+}]-ONO \leftrightarrow 2NO_2 + [Ce^{3+}]-\Box$$
(8)

Although surface nitrite ($[Ce^{4+}]$ -ONO) might be formed, this species was so unstable that it dissociated into NO₂ gas once it was formed.

At 30 °C, after the reaction between NO and the nitrates (Eq. (8)) took place, about 25 μ mol g⁻¹ nitrates, part of which were monodentate nitrates (Fig. S4), desorbed to form NO₂, and the remaining surface nitrate concentration was 35 μ mol g⁻¹ (Sections S2.1.3, S2.2 and Fig. S6 in Supporting Information), indicating that about half of the nitrate was reactive and unstable at 30 °C. At 150 °C (Fig. 2a), the amounts of NO consumption and NO₂ emission were 15 and 33 μ mol g⁻¹, respectively. The amount of the nitrate species formed during NO₂ adsorption was 18 μ mol g⁻¹ at 150 °C (Fig. 1), indicating that almost all the stable nitrates in Fig. S6 could react with NO gas to form NO₂.

3.3. Reaction between the NO and the adsorbed $\rm NH_3$ after $\rm NO_2$ adsorption

The reaction between NH₃ and NO₂ was also quantitatively determined. The amount of NH₃ adsorbed on NO₂-preadsorbed CeWO_x was 220 μ mol g⁻¹ at 30 °C (Fig. 3a), which was 60 μ mol g⁻¹ more than that on fresh CeWO_x (160 μ mol g⁻¹). Since the NO₂ adsorption formed 60 μ mol g⁻¹ of surface nitrates (Fig. 1), it can be inferred that NH₃ could react with the surface nitrates to form NH₄NO₃, leading to a 60 μ mol g⁻¹ increase in the adsorption amount of NH₃. Our previous DRIFT study found that NO₂ could react with NH₃ to form NH₄NO₃ at room temperature on CeWO_x [15]. Hence, one NH₃ molecule can react with one nitrate:

$$NH_3 + [M^{n+}] - OH \leftrightarrow [M^{n+}] - O - NH_4$$
(9)

$$[\mathsf{M}^{n_+}]\text{-}\mathsf{O}\text{-}\mathsf{NH}_4 + [\mathsf{C}e^{4_+}]\text{-}\mathsf{ONO}_2 \leftrightarrow [\mathsf{M}^{n_+}]\text{-}\mathsf{O}\text{-}\mathsf{NH}_4\mathsf{NO}_3\text{-}[\mathsf{C}e^{4_+}] \tag{10}$$

where $[M^{n^+}]$ -OH denotes a Brønsted acid site, and M^{n^+} denotes a Ce⁴⁺ or W^{n^+} .

It can be suggested that NH_3 and NO_2 adsorbed on different sites, so that the presence of the surface nitrates could increase the amount of NH_3 adsorption by forming NH_4NO_3 . It was reported by Li's group [22] that on CeO_2 - WO_3 , NH_3 could be adsorbed weakly on CeO_2 at the Lewis acid sites and strongly on WO_x at the Lewis acid sites and the hydroxyl formed on $Ce_2(WO_4)_3$ at the Brønsted acid sites. Joshi et al. [37] investigated the NH_3 adsorption on CeO_2 and CeO_2/W by density functional theory (DFT) calculations, and found that the NH_3 adsorption at the Lewis acid sites of CeO_2 (1 1 1) surface, either clean or doping with W, was weak (<21 kJ/mol), but NH_3 bound strongly at the Brønsted acid sites. Therefore, it is reasonable to conclude that NH_3 could

Fig. 3. (a) 500 ppm NH₃ adsorption at 30 and 150 °C on fresh CeWO_x and on CeWO_x pretreated in 500 ppm NO₂ in N₂ until saturation and then purged by N₂; (b) 500 ppm NO adsorption at 30 and 150 °C on CeWO_x saturated first by NO₂ and then by NH₃.

be adsorbed on the Lewis acid sites consisting of W species, and also on the Brønsted sites consisting of Ce species neighboring W atoms ([Ce⁴⁺]-OH) and W-OH sites in Ce₂(WO₄)₃, the overall amount of which was 160 µmol g⁻¹. The information above of identifying the nature of the active sites obtained from the literature can be applied in the quantification of the active site distribution on CeWO_x.

When NO was subsequently introduced into the reactor at 30 °C, almost no NO was consumed on this NH_4NO_3 -covered catalyst (Fig. 3b), indicating that NO gas could not react with the surface nitrates to form NO_2 due to the formation of NH_4NO_3 [18]. Similarly, Grossale et al. [17] found that the presence of NH_3 prohibited the reaction between NO and the surface nitrates by forming ammonia nitrates on Fe-zeolite, raising the reaction temperature.

The successive TPSR results showed that the consumption of NO started below 100 °C, and a maximum conversion of NO was observed at ~115 °C (Fig. 4), indicating that NO can react with NH₄NO₃ below 150 °C [15]. According to the above discussion, 60 μ mol g⁻¹ NH₄NO₃ was formed in this process, and the remaining amount of adsorbed NH₃ after N₂ purge was 101 μ mol g⁻¹ (Fig. S5). The quantification of NO consumption and NO₂ evolution during TPSR was 157 and 60 μ mol g⁻¹, respectively, indicating that 60 μ mol g⁻¹ NH₄NO₃ and 100 μ mol g⁻¹ NH₃ could react with 157 μ mol g⁻¹ NO at the ratios of NO/NH₄NO₃/NO₂ 1/1/1 and NO/NH₃ 1/1, as shown in Eqs. (11) and (12).

Fig. 4. TPSR of CeWO_x in 500 ppm NO pretreated by 500 ppm NO₂ and then 500 ppm NH₃ at room temperature.

 $4NO + 4(adsorbed NH_3) + 2(O atom) \rightarrow 4 N_2 + 6H_2O$ (11)

$$\label{eq:main_state} \begin{split} [\mathsf{M}^{n+}]\text{-}O\text{-}\mathsf{N}\mathsf{H}_4\mathsf{N}\mathsf{O}_3\text{-}[\mathsf{C}e^{4+}] + \mathsf{N}\mathsf{O} \rightarrow \mathsf{N}_2 + \mathsf{N}\mathsf{O}_2 + \mathsf{H}_2\mathsf{O} + [\mathsf{M}^{n+}]\text{-}\mathsf{O}\mathsf{H} + [\mathsf{C}e^{4+}]\text{-}\mathsf{O}\mathsf{H} \end{split} \tag{12}$$

where $[\mathsf{M}^{n^+}]\text{-}\mathsf{OH}$ denotes a Brønsted acid site, and M^{n^+} denotes a Ce^{4+} or $\mathsf{W}^{n^+}.$

Eq. (11) does not involve evolution of NO_2 , and could be the overall reaction for the following series of reactions:

$$NO + [Ce^{4+}] - O \leftrightarrow [Ce^{4+}] - ONO$$
(13)

where $[M^{n^+}]$ denotes a Lewis acid site and M^{n^+} denotes a metal site. It should be noted that it is difficult to detect the nitrite species ($[Ce^{4^+}]$ -ONO) since they are unstable and highly active toward the adsorbed NH₃ on CeWO_x, as pointed out in our previous study [15]. Analogously, Wang et al. [14] pointed out that it was difficult to detect the nitrite species using DRIFTS on Cu-SAPO-34, partly due to its high reactivity toward NH₃. Many researchers suggested the presence of the reaction concerning the nitrites since it also contributed to the SCR reaction [14,18,38]. Wang et al. [14] included the reaction between the nitrites and NH₃ in the NH₃-SCR mechanism on Cu-SAPO-34. Kijlstra et al. [38] proved the presence of the reaction between the NH₂ species and the reactive nitrite intermediates at low temperatures below 473 K on MnO_x/Al₂O₃. Nova et al. [18] pointed out that NO₂ disproportionated on V₂O₅-WO₃/TiO₂ to produce nitrates and nitrites, and the nitrites could react with NH₃ to form ammonium nitrite and further N₂. Therefore, reactions involving the nitrite species ([Ce⁴⁺]-ONO) were also included in the NH₃-SCR mechanism in this study.

At 150 °C, the amount of NH₃ adsorbed on NO₂-preadsorbed CeWO_x was 20 µmol g⁻¹ more than that on fresh CeWO_x (Fig. 3a). To identify if NH₃ could react with the nitrates adsorbed on CeWO_x at 150 °C, *in situ* DRIFT spectra were taken at 150 °C upon passing 500 ppm NH₃ over the NO₂-presorbed CeWO_x. As seen in Fig. S7, after the introduction of NH₃, the peaks of the surface nitrates decreased, indicating that the nitrates could react with NH₃ at 150 °C. After 5 min, the peaks of the nitrates disappeared and only NH₃ peaks were observed. Therefore, it can be concluded that all nitrates (18 µmol g⁻¹) could react with NH₃ at 150 °C. When NO was introduced onto the surface of CeWO_x subsequently, the amounts of NO consumption and NH₃ adsorption were 125 and 117 µmol g⁻¹ (Figs. 3b and S5), respectively, indicating that all the adsorbed NH₃ could participate in the SCR reaction

at 150 °C. The ratio of NO consumption to NH_3 adsorption was about 1:1, indicating that the reaction between NO and the adsorbed NH_3 (Eq. (11)) took place at 150 °C.

At this point, a clear picture of the active site distribution and the reaction pathway of both standard and fast SCR at 150 °C on $CeWO_x$ can be drawn, as shown in Fig. 5. The surface of $CeWO_x$ was covered mostly by NH₃, and the amount of surface nitrates formed by NO₂ (60 μ mol g⁻¹) was ~6 times greater than that formed by NO at 30 °C (Table 1). It should be noted that the composition of the catalyst has to be calculated based on the data collected at 30 °C, since the composition of the catalyst won't change with the increase in the temperature. With an increase in the temperature, the only change is the amount of the adsorbed species. Some weakly adsorbed species will desorb from the surface at higher temperatures, and the vacant active sites are just spectators and won't take part in the reaction. Thus, at 150 °C, some active sites did not participate in the reaction (Table 1) due to the weak interactions between the reactants and catalyst, e.g., the surface $[Ce^{4+}]$ -O did not adsorb NO₂, only a part of the $[Ce^{3+}]$ - \Box sites activated NO₂ to form [Ce⁴⁺]-ONO₂ and NO gas. To calculate the active site distribution, the different active sites should be clarified first. NH₃ could be adsorbed on the Lewis acid sites consisting of W

In the absence of H ₂ O NO _v adsorption	
35±3 µmol g ⁻¹ NO ₂ gas 40~63 µmol g ⁻¹ [Ce ³⁺]- \Box NO ₂ +NO ₂ + [Ce ³⁺]- \Box \leftrightarrow [Ce ⁴⁺]-ONO ₂ +NO	
$[Ce^{i*}]-ONO_2 + [Ce^{3*}]-\Box \leftrightarrow ([Ce^{i*}]-O)_2 = NO \leftrightarrow [Ce^{i*}]=O_2NO + [Ce^{3*}]-\Box$	→ 18 µmol g ⁻¹ nitrates
8±1 μmol g ⁻¹ NO gas 20 μmol g ⁻¹ oxidized Ce sites 2[Ce ⁺⁺]-O + NO ↔ [Ce ⁺⁺]-ONO + [Ce ⁺⁺]-O ↔ [Ce ⁺⁺]-ONO ₂ + [Ce ⁺⁺]-□ [Ce ⁺⁺] ₂ -O ₂ + NO ↔ ([Ce ⁺⁺]-O) ₂ =NO	► 8±1 µmol g ⁻¹ nitrates
$[\mathbf{C}\mathbf{e}^{4*}] - \mathbf{O}\mathbf{N}\mathbf{O}_2 + [\mathbf{C}\mathbf{e}^{3*}] - \Box \leftrightarrow ([\mathbf{C}\mathbf{e}^{4*}] - \mathbf{O})_2 = \mathbf{N}\mathbf{O} \leftrightarrow [\mathbf{C}\mathbf{e}^{4*}] = \mathbf{O}_2\mathbf{N}\mathbf{O} + [\mathbf{C}\mathbf{e}^{3*}] - \Box$	
NH ₃ adsorption	
122 \pm 4 µmol g ⁻¹ NH ₃ gas ^{61~70} µmol g ⁻¹ [Ce ⁴⁺]-OH (Bronsted a ⁹⁰⁻⁹⁹ µmol g ⁻¹ W sites (Lewis and Brons NH ₃ + [M ⁿ⁺]-OH \leftrightarrow [M ⁿ⁺]-ONH ₄	ucid sites) ted acid sites)
$\operatorname{NH}_3 + [\operatorname{M}^{n*}] \leftrightarrow [\operatorname{M}^{n*}] - \operatorname{NH}_3$	2 ± 4 µmor g · ausorbed NH3
Surface reactions	
$NO + [Ce^{4+}] - ONO_2 \leftrightarrow NO_2 + [Ce^{4+}] - ONO \leftrightarrow 2NO_2 + [Ce^{3+}] - [Ce^{3$	□ Eq.(8)
NO + [Ce ⁴⁺]-O ↔ [Ce ⁴⁺]-ONO	Eq.(13)
$[\mathrm{Ce}^{4+}]\text{-}\mathrm{ONO}_2 + [\mathrm{M}^{\mathrm{n}+}]\text{-}\mathrm{O}\text{-}\mathrm{NH}_4 \leftrightarrow [\mathrm{M}^{\mathrm{n}+}]\text{-}\mathrm{O}\text{-}\mathrm{NH}_4\mathrm{NO}_3\text{-}[\mathrm{Ce}^{4+}]$	Eq.(10)
$\mathrm{NO} + [\mathrm{M}^{\mathrm{n} \mathrm{+}}] \text{-} \mathrm{O} \text{-} \mathrm{NH}_4 \mathrm{NO}_3 \text{-} [\mathrm{Ce}^{4\mathrm{+}}] \rightarrow \mathrm{N}_2 + \mathrm{H}_2 \mathrm{O} + \mathrm{NO}_2 + [\mathrm{M}^{\mathrm{n} \mathrm{+}}] \text{-} \mathrm{O}$	H + [Ce ⁴⁺]-OH
("NH ₄ NO ₃ path")	Eq.(12)
$[Ce^{4+}]\text{-}ONO + [M^{n+}]\text{-}NH_3 \rightarrow N_2 + H_2O + [Ce^{4+}]\text{-}OH + [M^{n+}]$	
("nitrite path")	Eq.(14)
$[Ce^{4+}]\text{-}ONO + [M^{n+}]\text{-}O\text{-}NH_4 \rightarrow N_2 + H_2O + [M^{n+}]\text{-}OH + [Ce^{4+}]\text{-}OH + [Ce^{4+}]$	']-OH
("nitrite path")	Eq.(15)
$2 \mathbf{C}\mathbf{e}^{3+} \mathbf{-}\Box + \mathbf{O}_2 \leftrightarrow 2 \mathbf{C}\mathbf{e}^{4+} \mathbf{-}\mathbf{O}$	
$2[\mathbf{C}\mathbf{e}^{4+}]\textbf{-}\mathbf{O}\mathbf{H} \leftrightarrow [\mathbf{C}\mathbf{e}^{3+}]\textbf{-}\Box + [\mathbf{C}\mathbf{e}^{4+}]\textbf{-}\mathbf{O} + \mathbf{H}_2\mathbf{O}$	
[Ce ³⁺]-□: oxygen vacancy Ce site; [Ce ⁴⁺]-ONO ₂ : monodentate nitrate; ([Ce ⁴⁺]-O) ₂ =NO: bridging nitrate; [Ce ⁴⁺]=O ₂ NO: bidentate nitrate.	M ⁿ⁺ : a metal site;

Fig. 5. Mechanism of NH_3 -SCR over CeWO_x in the absence of H_2O at 150 °C.

Table 1	
Summary of the NO, NO ₂ and NH ₃ adsorption amounts on CeWO	x.

Conditions	Temperature	NO	NO ₂	NH ₃
In the absence of H_2O	30 °C	$10 \ \mu mol \ g^{-1}$	$[Ce^{4*}]-O + [Ce^{4*}]_2-O_2$: 20 µmol g ⁻¹ $[Ce^{3*}]-\Box$: 40 µmol g ⁻¹	$160\ \mu mol\ g^{-1}$
	150 °C	$8 \ \mu mol \ g^{-1}$	$[Ce^{3+}]-\Box$: 18 µmol g ⁻¹	$122 \ \mu mol \ g^{-1}$
In the presence of H_2O	30 °C 150 °C	20 μmol g ⁻¹ 33 μmol g ⁻¹	H₂O: 86 µmol g ⁻¹ [Ce ³⁺]-□: 16 µmol g ⁻¹	245 μmol g ⁻¹ 90 μmol g ⁻¹

species, and also on the Brønsted sites consisting of Ce species neighboring W atoms ($[Ce^{4+}]$ -OH) and W-OH sites in $Ce_2(WO_4)_3$, whereas NO_2 could be adsorbed on $[\mbox{Ce}^{3+}]\mbox{-}\Box$ and oxidized Ce sites including [Ce⁴⁺]-O and [Ce⁴⁺]₂-O₂. According to the Ce/W atomic ratio (Table S1) and the $Ce^{3+}/(Ce^{3+}+Ce^{4+})$ concentration [23] obtained by XPS, the amounts of $[Ce^{3+}]$ - \Box , oxidized Ce sites, $[Ce^{4+}]$ -OH and W species were calculated to be 40–63, 20, 61–70, and 90–99 μ mol g⁻¹ (For detailed calculation procedure please refer to Section S2.1.4 in Supporting Information), i.e., 0.342– 0.538 $[Ce^{3+}]$ - \Box nm⁻², 0.171 oxidized Ce nm⁻², 0.521–0.598 $[Ce^{4+}]$ -OH nm⁻², and 0.769–0.845 W nm⁻², respectively. To confirm that the value of the active site amount was correctly calculated, the amount of W in this study was compared with that calculated in the literature. Iwasaki et al. [39] pointed out that the NO reduction rate on WO₃/CeO₂ catalysts correlated closely with the W density when the theoretical W density was in the range of $0-10 \text{ W nm}^{-2}$. The W density calculated in the present study $(0.769-0.845 \text{ W nm}^{-2})$ was within the range of that (0-10 W nm⁻²) reported by Iwasaki et al. [39], indicating that the surface active site distribution calculated in this study had a correct order of magnitude, and is believable. The amounts of (monodentate + bidentate) and bidentate nitrates formed on $CeWO_x$ could also be calculated, at 17 and 23 $\mu mol \ g^{-1}$ (For detailed calculation procedure please refer to Section S2.1.4), respectively.

According to Eqs. (6)-(15) and (S1), both the "NH₄NO₃ path", i.e. the reaction between NO and NH₄NO₃, and the "nitrite path", i.e. the reaction between nitrite and the adsorbed NH₃, were present during the standard and fast SCR. These results confirm our previous conclusions drawn by the *in situ* DRIFTS results [15], indicating that the method in this study can be applied in studying the NH₃-SCR mechanism at low temperatures. However, it should be noted that the NO adsorption resulted in much less nitrates than NO₂ adsorption (Table 1), indicating that the "NH₄NO₃ path" might not play an important role due to the lack of NO₂ and the resulting lack of NH₄NO₃ during standard SCR. The "nitrite path" during standard SCR has been reported by many other researchers. Liu et al. [40] studied the standard SCR mechanism on W-doped CeO₂ catalysts using DFT calculations, and found the presence of the "nitrite path" during the standard SCR. The "nitrite path" was also reported to be present during standard SCR on a Mn/Fe-Ti spinel catalyst at low temperatures by Yang et al. [41]. Cheng et al. [42] suggested that the Langmuir-Hinshelwood (L-H) mechanism, i.e., the reaction between NO_2 and NH_4^+ ("nitrite path"), was involved in the standard SCR reaction on Cu-Mn/ZSM and Cu-Mn/SAPO-34. Bendrich et al. [43] found that the standard SCR mechanism involved the "nitrite path" on Cu-CHA. Therefore, it is reasonable to conclude that the "nitrite path" contributed to standard SCR on CeWO_x.

3.4. Reaction mechanism of NH₃-SCR in the presence of H₂O

Since H_2O is present under realistic reaction conditions, the effect of H_2O on the adsorption of NO_2 , NH_3 , and the NH_3 -SCR reaction was also investigated using TRM. No N_2O , N_2O_3 , N_2O_4 , or N_2O_5 was observed during this adsorption/reaction process. Seen from

Fig. 6, the pre-adsorption of H_2O increased the amounts of the NO₂ and NH₃ adsorption at 30 °C. As seen in Fig. 6a, the molar ratio between the consumed NO₂ and the formed NO was ~3:1 (129:44), indicating that Eq. (16) was present.

$$3NO_2 + H_2O \leftrightarrow 2HNO_3 + NO \tag{16}$$

The molar ratio between the NO₂ consumption and NO emission in the presence of H₂O (~3:1) was different from that in the absence of H₂O (~2:1) at 30 °C, suggesting that the NO₂ adsorption pathway was changed by H₂O. It is possible that the adsorption of H₂O covers the surface of CeWO_x, and NO₂ mainly adsorbed on H₂O molecules, leading to the presence of Eq. (16). Grossale et al. [17] reported that the molar ratio of NO formed and NO₂ consumed was 1:3 in the presence of H₂O over Fe-zeolite catalysts, and Eq. (16) contributes to the adsorption of NO₂ on Fe-zeolite catalysts in the presence of water. The reaction between NO₂ and H₂O taking place at 30 °C during NO₂ adsorption on CeWO_x was similar to that on Fe-zeolite in the presence of H₂O since the NO₂/NO ratio values on CeWO_x and Fe-zeolite were both 3:1.

However, at 150 °C, the NO₂ adsorption amount decreased slightly, and the molar ratio between the consumed NO₂ and the formed NO was 2:1 (32:16), indicating that Eq. (1) took place, and H₂O occupied a small amount of the active site for NO₂ adsorption at the reaction temperature. Similarly, Nova et al. [44] proposed that two NO₂ molecules could react with one H₂O molecule at the reaction temperature in the presence of H₂O on a commercial V₂O₅-WO₃/TiO₂ catalyst. Thus, the NO₂ adsorption in the presence of H₂O at 150 °C followed the same pathway (Eq. (1)) as that in the absence of H₂O.

The presence of H₂O increased the NO adsorption amounts at both 30 and 150 °C (Fig. 6c). However, as seen in Fig. S8b, most of the NO molecules could easily be removed by N₂ purge at either 30 or 150 °C, and it could be concluded that NO molecules were weakly adsorbed on the H_2O pretreated CeWO_x. Liu et al. [26] found that the amount of surface adsorbed NO species decreased when H₂O was introduced onto the surface of Fe_{0.75}Mn_{0.25}TiO_x, and ascribed this phenomenon to a competitive adsorption between H₂O and NO. A similar conclusion that H₂O could inhibit the adsorption of NO and impede active nitrate species formation on the surface of Mn-Fe/TiO₂ was drawn by Zhu et al. [45]. However, in the present study, a competitive adsorption between NO and H₂O was not observed, but instead, H₂O weakened the adsorption of NO. The weakly adsorbed NO species were easily to be removed by N₂ (Fig. S8b). Most of the surface NO species were weakly adsorbed in the presence of H₂O (much more weakly adsorbed than that in the absence of H₂O, Fig. S8b), leading to a decreased NH₃-SCR activity.

As seen in Fig. 6b and Table 1, the amount of NH₃ adsorbed at 30 °C increased by about 85 μ mol g⁻¹, whereas the NH₃ adsorption amount at 150 °C decreased by 32 μ mol g⁻¹ in comparison with that in the absence of H₂O. This indicates that the presence of H₂O could facilitate the weakly adsorbed NH₃ at 30 °C. It was reported that hydrogen bond originating from the interaction between a hydrogen atom and an electron rich atom, like N, was always present in chemical and biological processes, e.g., in the

Fig. 6. (a) 500 ppm NO₂ and (b) 500 ppm NH₃ adsorption on 2 vol% H₂O pretreated CeWO_x, and (c) 500 ppm NO + 2 vol% H₂O adsorption over fresh CeWO_x at 30 and 150 °C.

system containing NH₃ and H₂O [46–49]. Latajka and Scheiner [47] pointed out that the H₃N-HOH binding energy was <6 kcal mol⁻¹ based on DFT calculations, and Del Bene [48] found that the value was <8 kcal mol⁻¹, indicating that the H₃N-HOH interaction was weak. Therefore, the promotion of the weakly adsorbed NH₃ in this

study was ascribed to the formation of the H₃N-HOH interaction [49]. Nevertheless, when the temperature was increased to 150 °C, the weakly adsorbed NH₃ molecules desorbed from the surface, resulting in a decrease in the NH₃ adsorption amount. Many studies [25,26,50] reported that the presence of H₂O occupied the active sites for NH₃ adsorption, and a competitive adsorption between H₂O and NH₃ was present. This conclusion originated from the decreased NH₃ amount observed in the presence of H₂O [25,26,50]. However, the present study found that the decrease of NH₃ adsorption was not due to the competitive adsorption of NH₃ and H₂O, but was because of the interaction between NH₃ and H₂O (H₃N-HOH) weakening the NH₃ adsorption, which resulted in a larger amount of NH₃ desorption at 150 °C, and further, a decrease in the NH₃ adsorption amount at the reaction temperature (150 °C). Our previous study pointed out that W promoted the NH₃-SCR reaction on CeWO_x through promoting the NH₃ adsorption capacity [23]. Also, it was reported that the surface acidity of the Ce-based catalysts, i.e., the site for NH₃ adsorption, was an important factor for NH₃-SCR [51], and the NH₃-SCR activity increased with the increasing surface acid content. Therefore, less NH₃ participating in NH₃-SCR at 150 °C was one of the reasons for the decrease in the NH₃-SCR activity in the presence of H₂O on CeWO_x.

It can be proposed that NH_3 adsorption on the CeWO_x follows the equations:

Fig. 7. TPSR in 500 ppm NO + 2% H₂O of CeWO_x pretreated by 2 vol% H₂O, 500 ppm NO₂ and then 500 ppm NH₃ at 30 °C.

$$NH_3 + [M^{n+}] - OH \leftrightarrow [M^{n+}] - ONH_4$$
(9)

$$\mathsf{NH}_3 + [\mathsf{M}^{\mathsf{n}+}] \leftrightarrow [\mathsf{M}^{\mathsf{n}+}] \mathsf{-}\mathsf{NH}_3 \tag{17}$$

where $[M^{n+}]$ -OH and $[M^{n+}]$ denote a Brønsted acid site and a Lewis acid site, respectively, and M^{n+} denotes a metal site.

The results of TPSR in NO and H₂O of CeWO_x pretreated in the H₂O, NO₂ and NH₃ successively are shown in Fig. 7. Since the NO₂ adsorption formed 85 µmol g⁻¹ of surface nitrates (Fig. 6a), it is possible that 85 µmol g⁻¹ NH₄NO₃ was formed at 30 °C, while the remaining amount of adsorbed NH₃ at 30 °C was 214–85 = 129 µmol g⁻¹ (Fig. S8). The amounts of NO consumption, NO₂ and NH₃ evolution during TPSR were 159, 71, and 44 µmol g⁻¹ (Fig. 7), respectively, indicating that 85 µmol g⁻¹ NH₄NO₃ and 85 µmol g⁻¹ NH₃ could react with 159 µmol g⁻¹ NO at the ratios of NO/NH₄NO₃/(NO₂ emission) 1/1/1 (71/71/71) (Eq. (12)), NO/NH₃ 1/1 (68/68) (Eq. (11)), and NO/NH₄NO₃/NH₃ 1/1/1 (14/14/14) (Eqs. (10), (18) and (14)-(15)). Therefore, it can be proposed that the following equations are present during NH₃-SCR in the presence of H₂O:

Formation and decompositon of NH₄NO₃:

$$[\mathsf{M}^{\mathsf{n}_+}]\text{-}\mathsf{ONH}_4 + [\mathsf{Ce}^{4_+}]\text{-}\mathsf{ONO}_2 \leftrightarrow [\mathsf{M}^{\mathsf{n}_+}]\text{-}\mathsf{ONH}_4\mathsf{NO}_3\text{-}[\mathsf{Ce}^{4_+}] \tag{10}$$

NO reacted with NH₄NO₃ to form N₂ and NO₂:

$$NO + [M^{n+}]-ONH_4NO_3-[Ce^{4+}] \leftrightarrow NO_2 + N_2 + H_2O + [M^{n+}]-OH + [Ce^{4+}]-OH$$
(12)

Reaction between NO and nitrates:

$$NO + [Ce^{4+}] - ONO_2 + [Ce^{3+}] - \Box \leftrightarrow 2[Ce^{4+}] - ONO$$
(18)

Reactions between the adsorbed NH₃ and the nitrite species:

$$[Ce^{4+}]\text{-}ONO + [M^{n+}]\text{-}ONH_4 \rightarrow N_2 + H_2O + [Ce^{4+}]\text{-}OH + [M^{n+}]\text{-}OH$$
(15)

where Mⁿ⁺ denotes a metal site.

It should be noted that the NO₂ adsorption, the reaction between NO and the surface nitrates, the reaction between the nitrates and the adsorbed NH₃, and the reaction between NO and NH₄NO₃ (formed by the reaction between NH₃ and the nitrates produced from NO₂ adsorption) were studied in this study. These reactions are typical reactions when NO₂ is present in the reaction gas feed, i.e., under fast SCR conditions. Therefore, the mechanism studied was for describing both standard and fast SCR.

In summary, the standard and fast NH₃-SCR reaction pathways in the presence of H₂O are shown in Fig. 8. The reaction pathways of NH₃-SCR in the presence of H₂O are similar to those in the absence of H₂O (Fig. 5), including both the "nitrite path" and "NH₄-NO₃ path". Similar to the discussion above in Section 3.3, since the NO adsorption led to much less strong-adsorbed nitrates than NO₂ adsorption in the presence of H₂O, it is possible that the "NH₄NO₃ path" might not play an important role during standard SCR in the

Fig. 8. Mechanism of NH₃-SCR over CeWO_x in the presence of H₂O at 150 °C.

381

presence of H₂O, which is similar to the mechanism in the absence of H₂O. Seen in Fig. 7, in the presence of H₂O, NH₃ desorbed below 100 °C, demonstrating that NH₃ preferred desorbing to reacting with NO, consistent with the conclusion drawn from Fig. 6 that the NH₃ adsorption was weakened by H₂O. The amounts of the adsorbed active surface NO and NH₃ species decreased greatly due to the presence of H₂O, impeding the "nitrite path" reactions. Also, during TPSR in NO and H₂O, a maximum consumption of NO was observed at \sim 140 °C (Fig. 7), higher than that in the absence of H_2O (~115 °C, Fig. 4), indicating that the presence of H_2O inhibited the reaction between NO and NH₄NO₃/the adsorbed NH₃. Similarly, Xiong et al. [50] found that H₂O could reduce the oxidation ability of a low temperature SCR Mn-Fe spinel catalyst, inhibiting NO oxidation to NO₂ and the reaction between the adsorbed NH₃ and NO, which led to a lower NH₃-SCR reaction rate in the presence of H₂O. Huang et al. [27] reported that H₂O prohibited the reaction between the adsorbed NH₃ on Lewis acid sites and NO on $V_2O_5/$ AC, decreasing the SCR activity. Overall, both the weaker adsorption of NH₃/NO at the reaction temperature and the inhibition of the reaction between NO and NH₄NO₃/the adsorbed NH₃ resulted in a decreased NH₃-SCR activity in the presence of H₂O on CeWO_x.

4. Conclusions

In summary, the adsorption amount of NH₃ on CeWO_x was much greater than that of NO_x. NO_x adsorbed on $[Ce^{3+}]$ - \Box and oxidized Ce sites ($[Ce^{4+}]$ -O and $[Ce^{4+}]_2$ -O₂), at 40–63 and 20 µmol g⁻¹ respectively, while NH₃ adsorbed on $[Ce^{4+}]$ -OH and W species, at 61–70 and 90–99 µmol g⁻¹, respectively. At the reaction temperature, both the "NH₄NO₃ path", i.e. the reaction between NO and NH₄NO₃ to form N₂, H₂O and NO₂, and the "nitrite path", i.e. the reaction between nitrite and the adsorbed NH₃ to form N₂ and H₂O, were present on CeWO_x, both in the absence and presence of H₂O. The presence of H₂O weakened the adsorption of NO/NH₃ on CeWO_x, leading to a decrease in the adsorption amounts of the active species at 150 °C, and further, a decrease in the NH₃-SCR activity. Moreover, H₂O inhibited the reaction between NO and the adsorbed NH₃ species on CeWO_x, leading to a lower NH₃-SCR activity.

Conflicts of interest

None.

Acknowledgements

This work was financially supported by the National Key R&D Program of China (2017YFC0211101), the National Natural Science Foundation of China (21303247 and 21637005) and the China Postdoctoral Science Foundation (2012M520018).

Appendix A. Supplementary material

Detailed information on the experimental setup (Fig. S1), XPS (Table S1), FTIR (Fig. S2), *in situ* DRIFTS (Figs. S4 and S7), TPD (Fig. S6) results, blank adsorption experiment (Fig. S3), the determination of the different surface species amounts (Figs. S5 and S8) and the active site distribution (Section S2) is included. Supplementary data to this article can be found online at https://doi.org/ 10.1016/j.jcat.2018.11.030.

References

- [1] T.V. Johnson, Int. J. Engine Res. 10 (2009) 275-285.
- [2] R.Q. Long, R.T. Yang, Appl. Catal. B 24 (2000) 13-21.

- [3] J. Ma, Z.C. Si, X.D. Wu, D. Weng, Y. Ma, J. Environ. Sci. 41 (2016) 244–251.
- [4] F. Gao, N.M. Washton, Y. Wang, M. Kollar, J. Szanyi, C.H.F. Peden, J. Catal. 331 (2015) 25–38.
- [5] L.J. Xie, F.D. Liu, K. Liu, X.Y. Shi, H. He, Catal. Sci. Technol. 4 (2014) 1104– 1110.
- [6] A. Sultana, T. Nanba, M. Haneda, M. Sasaki, H. Hamada, Appl. Catal. B 110 (2010) 61–67.
- [7] K. Wijayanti, K. Leistner, S. Chand, A. Kumar, K. Kamasamudram, N.W. Currier, A. Yezerets, L. Olsson, Catal. Sci. Technol. 6 (2016) 2565–2579.
- [8] P.L. Wang, H.Q. Wang, X.B. Chen, Y. Liu, X.L. Weng, Z.B. Wu, J. Mater. Chem. A 3 (2015) 680–690.
- [9] X.L. Mou, B.S. Zhang, Y. Li, L.D. Yao, X.J. Wei, D.S. Su, W.J. Shen, Angew. Chem. Int. Ed. 51 (2012) 2989–2993.
- [10] X. Li, J.H. Li, Y. Peng, H.Z. Chang, T. Zhang, S. Zhao, W.Z. Si, J.M. Hao, Appl. Catal. B 184 (2016) 246–257.
- [11] X.Q. Wang, A.J. Shi, Y.F. Duan, J. Wang, M.Q. Shen, Catal. Sci. Technol. 2 (2012) 1386–1395.
- [12] Z.W. Huang, X. Gu, W. Wen, P.P. Hu, M. Makkee, H. Lin, F. Kapteijn, X.F. Tang, Angew. Chem. Int. Ed. 52 (2013) 660–664.
- [13] P. Forzatti, I. Nova, E. Tronconi, Angew. Chem. Int. Ed. 48 (2009) 8366-8368.
- [14] D. Wang, L. Zhang, K. Kamasamudram, W.S. Epling, ACS Catal. 3 (2013) 871– 881.
- [15] K. Liu, F.D. Liu, L.J. Xie, W.P. Shan, H. He, Catal. Sci. Technol. 5 (2015) 2290– 2299.
- [16] L. Chen, J.H. Li, M.F. Ge, Environ. Sci. Technol. 44 (2010) 9590–9596.
- [17] A. Grossale, I. Nova, E. Tronconi, J. Catal. 265 (2009) 141–147.
 [18] I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, AIChE J. 52
- (10) C. Deslussi, A. Varres, C.A. Patra, V.F. Visnersely, J.T. Miller, B.C. Counder, W.
- [19] C. Paolucci, A.A. Verma, S.A. Bates, V.F. Kispersky, J.T. Miller, R.G. Gounder, W. N. Delgass, F.H. Ribeiro, W.F. Schneider, Angew. Chem. Int. Ed. 53 (2014) 11828–11833.
- [20] A. Grossale, I. Nova, E. Tronconi, D. Chatterjee, M. Weibel, J. Catal. 256 (2008) 312–322.
- [21] L. Chen, J.H. Li, M.F. Ge, L. Ma, H.Z. Chang, Chin. J. Catal. 32 (2011) 836-841.
- [22] Y. Peng, K.Z. Li, J.H. Li, Appl. Catal. B 140–141 (2013) 483–492.
- [23] W.P. Shan, F.D. Liu, H. He, X.Y. Shi, C.B. Zhang, Chem. Commun. 47 (2011) 8046-8048.
- [24] W.P. Shan, F.D. Liu, Y.B. Yu, H. He, C.L. Deng, X.Y. Zi, Catal. Commun. 59 (2015) 226–228.
- [25] S.P. Ding, F.D. Liu, X.Y. Shi, K. Liu, Z.H. Lian, L.J. Xie, H. He, ACS Appl. Mater. Interfaces 7 (2014) 9497–9506.
- [26] F.D. Liu, H. He, Catal. Today 153 (2010) 70-76.
- [27] Z.G. Huang, Z.Y. Liu, X.L. Zhang, Q.Y. Liu, Appl. Catal. B 63 (2006) 260-265.
- [28] R.H. Kagann, A.G. Maki, J. Quant. Spectrosc. Radiat. Transf. 31 (2) (1984) 173– 176.
- [29] K.I. Hadjiivanov, Catal. Rev. Sci. Eng. 42 (1-2) (2000) 71-144.
- [30] C.H. Bibart, G.E. Ewing, J. Chem. Phys. 61 (1974) 1293-1299.
- [31] L. Shao, P.R. Griffiths, P.M. Chu, T.W. Vetter, Appl. Spectrosc. 60 (3) (2006) 254– 260.
- [32] L. Sivachandiran, F. Thevenet, P. Gravejat, A. Rousseau, Appl. Catal. B 142–143 (2013) 196–204.
- [33] J.A. Rodriguez, T. Jirsak, G. Liu, J. Hrbek, J. Dvorak, A. Maiti, J. Am. Chem. Soc. 123 (2001) 9597–9605.
- [34] Y. Lu, H. Chen, J. Phy. Chem. C 118 (2014) 10043–10052.
- [35] W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek, J. Catal. 171 (1997) 208-218.
- [36] N. Tang, Y. Liu, H.O. Wang, Z.B. Wu, J. Phys. Chem. C 115 (2011) 8214-8220.
- [37] A. Joshi, A. Rammohan, Y. Jiang, S. Ogunwumi, J. Mol. Struct.: Theochem. 912 (2009) 73-81.
- [38] W.S. Kijlstra, D.S. Brands, H.I. Smit, E.K. Poels, A. Bliek, J. Catal. 171 (1997) 219– 230.
- [39] M. Iwasaki, K. Dohmae, Y. Nagai, E. Sudo, T. Tanaka, J. Catal. 359 (2018) 55–67.
- [40] B. Liu, J. Liu, S. Ma, Z. Zhao, Y. Chen, X.-Q. Gong, W. Song, A. Duan, G. Jiang, J. Phys. Chem. C 120 (2016) 2271–2283.
- [41] S. Yang, F. Qi, S. Xiong, H. Dang, Y. Liao, P.K. Wong, J.H. Li, Appl. Catal. B 181 (2016) 570–580.
- [42] M. Cheng, B. Jiang, S. Yao, J. Han, S. Zhao, X. Tang, J. Zhang, T. Wang, J. Phys. Chem. C 122 (2018) 455–464.
- [43] M. Bendrich, A. Scheuer, R.E. Hayes, M. Votsmeier, Appl. Catal. B 222 (2018) 76–87.
- [44] I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, Catal. Today 114 (2006) 3–12.
- [45] L. Zhu, Z.P. Zhong, H. Yang, C.H. Wang, Water Air Soil Pollut. 227 (2016) 476.
- [46] P.A. Kollman, L.C. Allen, Chem. Rev. 72 (3) (1972) 283–303.
- [47] Z. Latajka, S. Scheiner, J. Phys. Chem. 94 (1990) 217-221.
- [48] J.E. Del Bene, J. Phys. Chem. 92 (1988) 2874–2880.
- [49] P.A. Stockman, R.E. Bumgarner, S. Suzuke, G.A. Blake, J. Chem. Phys. 96 (4) (1992) 2496-2510.
- [50] S.C. Xiong, Y. Liao, X. Xiao, H. Dang, S.J. Yang, Catal. Sci. Technol. 5 (2015) 2132–2140.
- [51] L. Zhang, J. Sun, L. Li, S. Ran, G. Li, C. Li, C. Ge, L. Dong, Ind. Eng. Chem. Res. 57 (2018) 490–497.