Alkali resistance promotion of Ce-doped vanadium-titanic-based NH3-SCR catalysts

Zidi Yan1,2, Xiaoyan Shi1,2,⁎, Yunbo Yu1,2,3, Hong He1,2,3

1. State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

ARTICLE INFO

Article history:
Received 18 December 2017
Revised 23 January 2018
Accepted 26 January 2018
Available online 7 February 2018

Keywords:
Selective catalytic reduction
Ammonia
Nitrogen oxides
V2O5/WO3-TiO2
Alkali deactivation

ABSTRACT


© 2018 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Introduction

Selective catalytic reduction (SCR) of nitrogen oxides (NOx) by NH3 is one of the most successful technologies for the control of NOx emission from power plant flue gas and diesel exhaust. The SCR system for coal-fired power plants is commonly in the high-dust (HD) configuration, in which the SCR catalyst is upstream of the electrostatic dust precipitator and processes high dust flue gas with a temperature range of 300–400°C. Vanadium-titanic-based catalysts (e.g., V2O5-WO3/TiO2), the most widely used SCR catalysts, can provide high performance NOx reduction in the temperature range 300–400°C (Pârvulescu et al., 1998; Xu et al., 2017; Zhu et al., 2017). However, a major problem in practical application of V2O5-WO3/TiO2 catalysts has been their strong deactivation by deposition of alkali and alkaline earth metals in fly ash. For example, 1% K2O-doped V2O5-WO3/TiO2 gives almost no SCR activity at temperatures from 250 to 400°C (Kamata et al., 1999). The effect of alkali and alkali earth metals on both tungsten-free and tungsten-containing vanadium-titanic-based catalysts has been well studied (Chen et al., 2010; Due-Hansen et al., 2009; Kamata et al., 1999; Lietti et al., 1993; Lisi et al., 2004; Nicosia et al., 2007, 2008; Tang et al., 2010; Wu et al., 2013). The Brønsted acidity of catalysts and the amount of NH3 adsorbed on the surface can be decreased by alkali metals like K, which cause the decrease of SCR activity (Kamata et al., 1999; Lietti et al., 1993). Nicosia et al. (2008) explained the deactivation of V2O5-WO3-TiO2 catalysts by alkali and alkali earth metals by a mechanism whereby the

⁎ Corresponding author. E-mail: xyshi@rcees.ac.cn (Xiaoyan Shi).
poisoning element (Ca, K) occupies the non-atomic hole sites of the (010) V₂O₅ surface, such that both Brønsted acid and V⁵⁺ = O sites are blocked.

Besides the effect on surface acidity, the reducibility of V₂O₅/TiO₂ catalysts could be another reason for the poisoning effect of Na⁺ and Ca⁺ (Tang et al., 2010). Yu et al. (2013) found that the isolated vanadia species over the V₂O₅–WO₃/TiO₂ catalyst were more reactive with potassium than polymeric vanadia species. Chen et al. (2009) reported that decreases in NH₃ adsorption, surface chemisorbed oxygen and reducibility of surface vanadium species could be the main factors in the poisoning effect of alkali metal.

In our previous study, cerium–titanium (Ce/TiO₂, CeTiO₃, CeW₅TiO₁₅) catalysts were developed and showed high activity for NH₃-SCR (Shan et al., 2011, 2012; Xu et al., 2008). Chen et al. (2009) and Peng et al. (2012) reported that substitution part of W by Ce in V₂O₅/WO₃-TiO₂ (0.1 or 0.4 wt.% of V₂O₅) can promote SCR activity in the temperature range 200–450°C and enhance the catalyst’s alkali poisoning resistance. Xu et al. (2015) studied the addition of Ce and Sb to the V₂O₅/TiO₂ (5 wt.% of V) can improve the low temperature activity for NH₃-SCR of NO. Here, the promotional effect of Ce-doping on the alkali metal resistance of the V₂O₅/WO₃-TiO₂ catalyst was investigated. The effect of K-poisoning on V₂O₅/WO₃-TiO₂ and Ce-doped V₂O₅/WO₃-TiO₂ were studied by means of activity measurements, X-ray photoelectron spectroscopy (XPS), NH₃-temperature pressure decomposition (NH₃-TPD), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and H₂-temperature program reduction (H₂-TPR).

1. Materials and methods

1.1. Catalyst preparation

The catalysts were prepared by a wet impregnation method. TiO₂ powder containing 5 wt.% WO₃ was used in this work. Ammonium metavanadate was dissolved in an oxalic acid solution. The TiO₂ powder was impregnated in the mixed solution by stirring for 1 hr. After rotary evaporation, the sample was dried at 110°C overnight and then calcined at 500°C in air for 3 hr. V₂O₅/WO₃-TiO₂ catalysts with 1 wt.% V₂O₅ were prepared and denoted as VWTi. Ce-doped V₂O₅/WO₃-TiO₂ catalysts with 6 wt.% Ce were prepared by adding a cerium nitrate solution into the solution of ammonium metavanadate and oxalic acid, and followed by a process similar to the preparation of V₂O₅/WO₃-TiO₂ catalysts. Ce-doped V₂O₅/WO₃-TiO₂ catalysts were denoted as Ce-VWTi. The K-containing samples were prepared by impregnating the dry powder with KNO₃ solution for 8 hr, then dried in air at 100°C overnight and calcined at 500°C for 3 hr. The Ca and Mg poisoning samples were prepared by the same procedures according to the molar ratio of Ca/V = Mg/V = 4. All catalysts were ground and sieved to 40–60 mesh for activity testing.

1.2. Catalytic activity measurements

The reaction conditions were controlled as follows: 500 ppm NO, 500 ppm NH₃, 5 vol.% O₂, N₂ balance; 150 mg catalyst, total flow rate of 500 ml/min and gas hourly space velocity (GHSV) = 100,000 hr⁻¹. The effluent gas was analyzed using an FTIR spectrometer (Nexus 670, Nicolet, USA) equipped with a heated, low volume multiple-path gas cell (2 m), which can continuously analyze the NO, NO₂, N₂O and NH₃ in the effluent gas. The spectra were collected when the SCR reaction reached a steady state. NO₃ conversion was calculated as follows (Liu et al., 2009):

\[
\text{NO₃ conversion} = \left(1 - \frac{[\text{NO} \text{out}] + [\text{NO}₂ \text{out}]}{[\text{NO} \text{in}]} \right) \times 100\%
\]

where [NO] – [NO] and [NO₂] refer to the NO concentrations at the outlet and inlet, and the NO₂ concentration at the outlet, respectively.

1.3. Catalyst characterization

The in situ DRIFTS experiments were performed on an Fourier transform infrared spectroscopy (FTIR) spectrometer (Nexus 670, Nicolet, USA) equipped with an mercury cadmium telluride (MCT) detector cooled by liquid nitrogen and an in situ DRIFTS reactor cell with ZnSe window connected to a purging/adsorption gas control system, collecting 100 scans at spectral resolution of 4 cm⁻¹. The reaction temperature was controlled precisely by an Omega programmable temperature controller. Each sample was pretreated at 350°C in a flow of 20 vol.% O₂/N₂ for 1 hr, and cooled down to 50°C in N₂. The sample was saturated at 50°C with 0.5% NH₃ in N₂ for about 30 min, and purging with N₂ at 50°C for 1 hr, then heating up to 150°C. The spectra were recorded at 150°C.

Ammonia temperature-programmed desorption (NH₃-TPD) experiments were used to determine the NH₃ storage capacity of SCR catalysts. The test sample (100 mg) was pretreated at 400°C for 30 min by 20 vol.% O₂/N₂, and then cooled down to 150°C. NH₃ was introduced until the adsorption on the sample was saturated. The sample was then sufficiently purged with N₂ to remove excess absorbate from the surface of the sample. The TPD was conducted by heating the sample in N₂ from 150 to 500°C at a rate of 10°C/min and the NH₃ in the outlet gas was analyzed by an online NEXUS 670-FTIR (Nexus 670, Nicolet, USA) spectrometer.

The catalysts were analyzed using X-ray photoelectron spectroscopy (XPS) to identify the surface nature. The XPS data were taken on using Al Kα radiation (AXIS Ultra, Kratos, Japan). The binding energy was corrected using the energy of adventitious carbon (284.7 eV).

H₂-TPR experiments were performed in a flow of 10% H₂/Ar mixture (50 cm³/min) over 50 mg of catalyst using a heating rate of 10°C/min. The consumption of H₂ was detected by thermal conductivity detector (TCD) (AutoChem II 2920, Micromeritics, USA).

2. Results and discussion

2.1. SCR activity evaluation

Commonly, the operating temperature window of vanadium based catalysts for reducing NOₓ from stationary sources is between 300 and 400°C. To investigate the effect of K doping on the VWTi and Ce-VWTi catalysts, the NH₃-SCR activity of fresh and K-doped catalysts was tested. Fig. 1a–b shows the NH₃-SCR activity and of VWTi and Ce-VWTi catalysts with different K loadings at the temperature range from 275 to
450°C under a fixed GHSV of 100,000 hr⁻¹. As can be seen in Fig. 1a, poisoning of VWTi catalysts with K led to a decrease in NH₃-SCR activity. NOₓ conversion of VWTi catalysts decreased with the increase of K loading, and decreased almost to zero with a K/V molar ratio of 4 at all temperatures.

A clearly improved SCR activity was obtained on Ce-VWTi catalysts at 275°C, where the NOₓ conversion over VWTi was increased from 81% to almost 100% by addition of Ce (Fig. 1a). Ce-VWTi catalysts showed much better resistance to K poisoning compared with VWTi catalysts. The NOₓ conversion of Ce-VWTi catalysts remained at almost 99% even with a K/V molar ratio of 1 at all temperatures. For the Ce-VWTi catalyst, 90% NOₓ conversion still could be obtained with a K/V molar ratio of 4 at temperatures above 350°C, whereas in this case VWTi showed no activity.

The concentrations of N₂O in the out gas from the SCR reaction over fresh and K doping VWTi and Ce-VWTi were shown in Fig. 1c and d. It can be seen that, the formation of N₂O was little for all the test samples. The highest concentration of N₂O in out gas was formed at around 12 ppm, which was produced from SCR reaction over fresh VWTi catalysts at 450°C.

The addition of Ce to V₂O₅/WO₃-TiO₂ can also improve the resistance to poisoning of Ca²⁺ and Mg²⁺. The results in Fig. 1c and d show that the NOₓ conversion of Ce-VWTi was obviously higher than that of Ce-VWTi, after the deactivated by the same amount of Ca²⁺ and Mg²⁺ (the molar ratio of Ca/V = Mg/V = 4).

2.2. In situ DRIFTS of adsorbed NH₃ species

The alkali metals can affect the Brønsted acidity and the amount of NH₃ adsorbed on the V₂O₅/TiO₂ catalyst surface (Kamata et al., 1999; Li et al., 1993). The in situ DRIFTS results of NH₃ adsorption for fresh and K-containing (K/V molar ratio of 4) VWTi and Ce-VWTi catalysts are shown in Fig. 3. The region of 2250–3500 cm⁻¹ is typical of the stretching vibration of weakly-adsorbed ammonia species, and the bands at 3641 cm⁻¹ can be assigned to surface O-H stretching, which is caused by the hydroxyl consumption through interaction with NH₃ to form NH₄⁺ (Chen et al., 2009; Peng et al., 2012). The bands around 1677 and 1457 cm⁻¹ are due to the bending vibration of the adsorbed NH₃ species.

Fig. 2 – NOₓ conversion of Ca and Mg posing V₁.0WTi and Ce-V₁.0WTi: Ca/V (molar ratio) = Mg/V (molar ratio) = 4.
to NH₃ chemisorbed on the Brønsted acid sites, whereas the bands at 1602 cm⁻¹ can be assigned to the asymmetric bending vibrations of ammonia species coordinated to Lewis acid sites (Chen et al., 2010; Lietti et al., 1993; Nicosia et al., 2008).

From the spectra, the bands corresponding to Brønsted acid sites (1677 and 1457 cm⁻¹) showed higher intensity than the bands corresponding to Lewis acid sites (1602 cm⁻¹). The band of Lewis acid sites was covered by the bands of Brønsted acid sites and was difficult to distinguish on fresh catalysts. Adsorbed NH₃ species observed on VWTi and Ce-VWTi gave signals at almost the same wavelength positions, as shown in Fig. 3.

The effect of K on the adsorbed NH₃ species on VWTi was similar to that on the Ce-VWTi catalyst. A significant decrease in the intensity of signals of NH₃ coordinated to Brønsted acid sites (1457 and 1677 cm⁻¹) was observed for alkali-poisoned catalysts, while the intensity of signals of NH₃ coordinated to Lewis acid sites (1602 cm⁻¹) was almost unchanged. Those results are in accordance with the studies of Nicosia et al. (2008) and Chen et al. (2010).

2.3. NH₃-TPD

The surface acidity of the SCR catalysts was also studied by NH₃-TPD experiments. The NH₃-TPD profiles are shown in Fig. 4. As expected, the NH₃ storage capacity of VWTi and Ce-VWTi significantly decreased after K doping. The NH₃ storage capacity of Ce-VWTi decreased from 322 to 90 μmol/g and that of VWTi from 364 to 128 μmol/g, when the K doping amount was K/V = 2. The results showed that the addition of ceria to VWTi did not increase the NH₃ storage capacity of the K poisoned catalysts. It indicates that the better alkali resistance of Ce-VWTi has no relation with the surface acidity of SCR catalysts.

2.4. XPS results

The XPS results of O 1s on fresh and K-containing VWTi and Ce-VWTi are shown in Fig. 5. The O 1s peak was deconvoluted into two sub-bands by searching for the optimum combination of Gaussian bands with correlation coefficients (r²) above 0.997. The sub-band at lower binding energy (with peak around 530.5 eV) corresponded to lattice oxygen O²⁻ (denoted as Oβ), and the sub-band at higher binding energy (with peak around 531.4 eV) corresponded to surface-adsorbed oxygen (denoted as Oα), such as O²⁻ or O belonging to defect-oxide or hydroxyl-like groups (Chen et al., 2010; Kang et al., 2007; Liu et al., 2009). It can be seen that the Oα ratio calculated by Oα/(Oα + Oβ) for VWTi and Ce-VWTi catalysts was decreased by K poisoning. A decrease in Oα ratio after doping alkali metals (K, Na) on V₂O₅-WO₃/TiO₂ catalysts was also observed by Chen et al. (2010). Usually, Oα is more reactive in oxidation reactions due to its higher mobility than Oβ, and a higher Oα ratio could be correlated with higher SCR activity (Gu et al., 2010; Kang et al., 2007; Liu et al., 2009; Shan et al., 2012). The higher Oα ratio on Ce-VWTi means that more surface oxygen vacancies existed, which is beneficial for higher SCR activity at 275°C, compared with VWTi. The Oα ratio on K-containing Ce-VWTi (46%) is higher than that on K containing VWTi (40%), which could be one of the contributors to the promotion of K resistance.

Fig. 6 shows the XPS results of V 2p and Ce 3d for fresh and K-poisoned VWTi and Ce-VWTi catalysts (Chen et al., 2009; Gu et al., 2010; Guo et al., 2009; Shi et al., 2011). The binding energy of V 2p₂/₃ was found at 516.2 eV for VWTi and at 516.6 eV for Ce-VWTi (Guo et al., 2009; Shi et al., 2011). This suggests that vanadium in VWTi and Ce-VWTi existed as V⁴⁺ and V⁵⁺. Higher V 2p₂/₃ binding energy for Ce-VWTi indicated that the ratio of V⁴⁺/V⁵⁺ on VWTi was affected by the Ce doping, with increasing...
The binding energy of V\(^{2+}\) (Guo et al., 2009; Shi et al., 2011) for VWTi and Ce-VWTi did not shift after K poisoning. This result indicates that K poisoning did not affect the states of vanadium in the catalysts. From the XPS spectra of Ce 3d, a decrease in intensity of the pair of peaks corresponding to Ce\(^{3+}\) (u1,v1) and increase in intensity of the peaks corresponding to Ce\(^{4+}\) (u, u2, u3, v, v2, v3) was observed on K/Ce-VWTi (Chen et al., 2009; Peng et al., 2012). This suggested that K poisoning caused the decrease of Ce\(^{3+}\) species and increase of Ce\(^{4+}\) species on the catalyst. A higher Ce\(^{3+}/Ce^{4+}\) ratio indicates that more oxygen vacancies can be generated in the catalyst, which is beneficial for the NH\(_3\)-SCR reaction (Gu et al., 2010; Shan et al., 2012). A certain amount of Ce\(^{3+}\) species was found to be retained in Ce-VWTi with K/V = 4 (molar ratio). This might one of factors for the high SCR activity of this catalyst.

2.5. H\(_2\)-TPR results

The reducibility of vanadium species over V\(_2\)O\(_5\)(-WO\(_3\))/TiO\(_2\) can be diminished by alkali metal poisoning, which is one of the main factors for the decrease of SCR activity (Chen et al., 2010; Tang et al., 2010). Therefore, H\(_2\)-TPR experiments were carried out to examine the influence of the alkali metals on the reduction behavior of the VWTi and Ce-VWTi catalysts. The H\(_2\)-TPR profiles of fresh and K-poisoned catalysts are shown in Fig. 7. It can be seen that the TPR profiles for all samples are similar. The first strong peak at 380°C for VWTi can be attributed to the reduction of V\(^{5+}\) to V\(^{3+}\) (Chen et al., 2009, 2010; Shi et al., 2011; Tang et al., 2010). The strong peak at 472°C for Ce-VWTi can be attributed to the reduction of V\(^{5+}\) and Ce\(^{4+}\). The results suggested that the reduction behavior of the catalysts is greatly influenced by the K poisoning. The first strong peaks on K/VWTi and K/Ce-VWTi shifted to higher temperatures, at around 530°C. This indicated that the K doping into the catalysts decreased the reducibility of active metal species (V and Ce). Those results are in agreement with the results of Tang et al. (2010) and Chen et al. (2010), who found that the reduction peaks of V species over alkali metal-poisoned V\(_2\)O\(_5\)/TiO\(_2\) and V\(_2\)O\(_5\)/WO\(_3\)/TiO\(_2\) shifted to higher temperature. The results showed that the difference in the
temperature of first strong reduction peaks between fresh and K-containing catalyst was much higher with VWTi than for Ce-VWTi. This suggested that the decrease of reducibility of active metal species over Ce-VWTi due to K doping was much lower than that over VWTi.

It is generally accepted that the vanadia species over vanadia–tungsta–titania are the active sites for SCR reaction which act as both acid sites and redox sites (Marberger et al., 2016). The blockage or occupation of active sites by alkali metals resulted in the loss of SCR activity (Nicosia et al., 2008). Peng et al. (2012) ascribed the promotion of alkali resistance of V0.4-W10/Ti by substitution 5% W by Ce to the enhancement of the reducibility of the catalyst, Ce acting as an alkali metals’ reservoir, and the transformation of alkali metal to ceria phase more possibly than to TiO2. Chen et al. (2015) considered that tungsten oxide can act as a sacrificial agent for the K poising of V2O5-WO3/TiO2, and the residual vanadia active sites were critical to SCR activity of poisoned V2O5-WO3/TiO2. Therefore, the V2O5-WO3/TiO2 with highest V loading showed the best alkali resistance in their study (Chen et al., 2015). On the other hand, the Ce species are generally considered as the redox sites for Ce-based SCR catalysts (Shan et al., 2011, 2012). From the results in Appendix A Fig. S1, the CeWTi showed obviously better K resistance than VWTi and lower K resistance ability than Ce-VWTi. Additionally, the significant decrease of surface acidity can be observed for both VWTi and Ce-VWTi. Taking those things into account, we considered that, the enhancement of alkali resistance of Ce-VWTi might be mainly attributed to the increase of remained active sites for SCR reactions by Ce.

3. Conclusions

on the acid sites resulted in a significant decrease of Brønsted acid sites, while Lewis acid sites were almost unchanged, both for V₂O₅-WO₃-TiO₂ and Ce-V₂O₅-WO₃-TiO₂ catalysts. The higher K resistance of Ce-V₂O₅/WO₃-TiO₂ might be attributable to the increase of remained active sites for SCR reactions by Ce after K doping.

Acknowledgements

This work was financially supported by the National Key research & development (R&D) Program of China (No. 2017YFC0211101), the Key Project of National Natural Science Foundation (No. 21637005) and Science and Technology Program of Tianjin, China (No. 16FYXTSF00290).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jes.2018.01.024.

REFERENCES


