研究内容 – 贺泓研究组 http://hehong.zen.com 中国科学生态环境研究中心中国科学院 Mon, 19 Apr 2021 06:00:32 +0000 zh-CN hourly 1 https://wordpress.org/?v=5.2.13 常温催化净化甲醛 http://hehong.zen.com/?p=2257 Thu, 27 Feb 2020 01:52:20 +0000 http://hehong.rcees.ac.cn/?p=2257 1. 室温催化氧化甲醛Pt/TiO2基催化剂

研制出了可室温催化氧化甲醛的Pt/TiO2催化剂,该催化剂不需要任何外加能量,常温常压下就能将甲醛完全催化分解为H2O和CO2,无副产物产生,且具有良好的耐久性。与传统甲醛氧化催化剂和甲醛氧化剂相比,这种Pt/TiO2催化剂在国际上首次实现了甲醛气体的室温催化氧化。阐明了Pt的高度分散是Pt/TiO2催化剂具有室温高效催化氧化甲醛特性的关键因素,并明确了贵金属催化剂室温催化氧化甲醛的反应机理。(Catal. Commun., 2005, 6, 211; Appl. Catal. B, 2006, 65, 37; Catal. Today, 2007, 126, 345)

Pt/TiO2催化剂氧化甲醛的性能及其反应途径

2. 碱金属添加和高温还原处理显著提高催化剂性能

发现碱金属对Pt/TiO2室温催化氧化甲醛活性显著的助催化作用,在苛刻的反应条件下,Pt/TiO2室温下甲醛的转化率仅为20%,而含碱金属的Pt/TiO2催化剂室温对甲醛的转化率为100%。同时揭示该助促进作用是碱金属添加促进了Pt在载体表面的原子级分散,开启了室温催化氧化甲醛的新途径。(Angew. Chem. Int. Ed., 2012, 51, 9628)

碱金属对Pt/TiO2催化剂氧化甲醛的促进作用及其反应途径

进一步研究发现碱金属的促进作用普适于Pd/TiO2和Ir/TiO2催化剂体系。碱金属添加能显著促进催化剂对氧气和水的活化,因此显著提高了Pd基和Ir基催化剂室温催化氧化甲醛性能;同时,进一步阐明了氧气和水在催化剂室温氧化甲醛反应过程中具有协同作用。(Environ. Sci. Technol., 2014, 48, 5816; Catal. Sci. Technol., 2016, 6, 2289; Catal. Today, 2017, 281, 412; ACS Catal., 2018, 8, 11377)

碱金属对Pd/TiO2和Ir/TiO2催化剂氧化甲醛的促进作用

发现高温还原处理对Pd/TiO2催化剂室温氧化甲醛具有促进作用。揭示了高温还原处理促进Pd分散的反常现象,阐明了高温处理过程中载体产生的氧空位在氧化甲醛反应过程中活化水和氧的重要作用,为制备高分散的负载贵金属催化剂提供了新思路。(Appl. Catal. B, 2017, 217, 560)

高温还原处理对Pd/TiO2催化剂氧化甲醛的促进作用

3. 常温催化净化甲醛技术产业化

实现了常温催化净化甲醛技术的产业化应用,设计组建了室内甲醛净化功能组件和空气净化器。该新型甲醛空气净化器具有高效、耗能低、安全、使用寿命长以及没有二次污染等优势,各项指标均优于传统净化技术的空气净化器,新技术空气净化器已经取得了较好的经济和社会效益。该技术早在2008年就已应用和服务于第29届奥林匹克运动会,贺泓研究员为此获得“科技奥运先进个人”称号。该成果获中国专利优秀奖和2011年国家发明二等奖。

常温催化甲醛技术产业化成果

相关论文

19.Xueyan Chen, Min Chen, Guangzhi He, Fei Wang, Guangyan Xu, Yaobin Li, Changbin Zhang*, Hong He, “Specific role of potassium in promoting Ag/Al2O3 for catalytic oxidation of formaldehyde at low temperature”, J. Phys. Chem. C., 122, (2018) 27331-27339.

18.Yaobin Li, Xueyan Chen, Chunying Wang, Changbin Zhang*, Hong He, “Sodium enhances Ir/TiO2 activity for catalytic oxidation of formaldehyde at ambient temperature”, ACS Catal., 8, (2018) 11377-11385.

17.Yaobin Li, Changbin Zhang*, Jinzhu Ma,Min Chen,Hua Deng, Hong He*, “High temperature reduction dramatically promotes Pd/TiO2 catalyst for ambient formaldehyde oxidation”, Appl. Catal. B, 217, (2017) 560-569.

16.Yaobin Li, Changbin Zhang*, Hong He, “Significant enhancement in activity of Pd/TiO2 catalyst for formaldehyde oxidation by Na addition”, Catal.Today,281, (2017) 412-417.

15.Yaobin Li, Changbin Zhang, Hong He*, Jianghao Zhang, Min Chen, “Influence of alkali metals on Pd/TiO2 catalysts for catalytic oxidation of formaldehyde at room temperature”, Catal. Sci. Technol., 6(7), (2016) 2289-2295.

14.Jianghao Zhang, Yaobin Li, Yan Zhang, Min Chen, Lian Wang, Changbin Zhang*, Hong He, “Effect of support on the activity of Ag-based catalysts for formaldehyde oxidation”,Sci. Rep., 5, (2015) 12950.

13.Jianghao Zhang, Yaobin Li, Lian Wang, Changbin Zhang*, Hong He. “Catalytic oxidation of formaldehyde over manganese oxides with different crystal structure”, Catal. Sci. Technol., 5(4), (2015) 2305-2313.

12.张江浩,王亚飞,张长斌*,贺泓,“负载方式对Ag/CoO3催化剂催化氧化甲醛活性的影响”,化学工业与工程,32(3),(2015)67-72.

11.Changbin Zhang, Yaobin Li, Yafei Wang, Hong He*, “Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature”, Environ. Sci. Technol., 48, (2014) 5816-5822.

10.Changbin Zhang, Fudong Liu, YanpingZhai, Hiroko Ariga, Nan Yi, Yongchun Liu, Kiyotaka Asakura, Maria Flytzani-Stephanopoulos*, Hong He*, “Alkali metal promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures”, Angew. Chem. Int. Ed.2012, 51(38) 9628-9632.

9.Li Zhou, Junhui He*, Jie Zhang, Zhicheng He, Yucai Hu, Changbin Zhang, and Hong He, “Facile in-situ synthesis of manganese dioxide nanosheets on cellulose fibers and their application in oxidative decomposition of formaldehyde”, J. Phys. Chem. C, 2011, 115, 16873-16878.

8.Ken-ichi Tanaka*, Masashi Shou, Hong He, Changbin Zhang, Daling Lu, “A CO-tolerant hydrogen fuel cell system designed by combining with an extremely active Pt/CNT catalyst”, Catal. Lett., 127, (2009) 148-151.

7.Hongwei Gao*, Tingxia Yan, Changbin Zhang, Hong He, “Theoretical and experimental analysis on vibrational spectra of formate species adsorbed on Cu-Al2O3 catalyst”, J. Mol. Struct. (THEOCHEM), 857, (2008) 38-43.

6.Hongmin Chen, Junhui He*, Changbin Zhang, Hong He, “Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde”, J. Phys. Chem. C, 111, (2007) 18033-18038.

5.Changbin Zhang, Hong He*, “A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature”, Catal. Today, 126, (2007) 345-350.

4.Changbin Zhang, Hong He*, Ken-ichi Tanaka, “Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature”, Appl. Catal.B, 65, (2006) 37-43.

3.Xiaoyan Shi, Changbin Zhang, Hong He, Masashi Shou, Ken-ichi Tanaka*, Shinichi Sugihara, Yoshitaka Ando, “Activation of Pt/TiO2 catalysts by structural transformation of Pt-sites”, Catal. Lett., 107(1-2), (2006) 1-4.

2.Changbin Zhang, Xiaoyan Shi, Hongwei Gao, Hong He*, “The elimination of formaldehyde over Cu-Al2O3 at room temperature”, J. Environ. Sci., 17, (2005) 429-432.

1.Changbin Zhang, Hong He*, Ken-ichi Tanaka, “Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature”, Catal. Commun., 6, (2005) 211-214.

相关专利

  1. 6.贺泓,张江浩,张长斌,李要彬,王莲,一种锰氧化物催化剂用于催化氧化甲醛的用途,申请日期:2015 .06 .25,授权公告日:2017.08.22,发明专利号:ZL201510359133.2。

  2. 5.贺泓,张长斌,王莲,王少莘,一种用于室温甲醛净化的催化剂及其用途,申请日期:2015 .04 .22,授权公告日:2017.06.06,发明专利号:ZL 201510192626.1。

  3. 4.张长斌,贺泓,马金珠,王彩霞,郑述全,防尘防甲醛口罩,申请日期:2014年12月26日,授权公告日: 2015.8.19, 实用新型专利号: ZL201420848013.X。

  4. 3.贺泓,张长斌,田中虔一,一种高效的室温条件下催化完全氧化甲醛的催化剂,申请日:2004.12.28,授权公告日:2011.4.13,发明专利号:ZL200410102837.3。

  5. 2.贺泓,张长斌,王少莘,一种室温催化完全氧化甲醛的催化剂申请日:2007.9.6,授权公告日:2010.11.24,发明专利号:ZL200710121423.9。

  6. 1.贺泓,张长斌,王少莘,一种用于室温甲醛净化的金属载体负载的催化剂。申请号:PCT/CN2013/075700,申请日期:2013.5.16。

]]>
挥发性有机物(VOCs)催化净化 http://hehong.zen.com/?p=2297 Thu, 27 Feb 2020 01:10:36 +0000 http://hehong.rcees.ac.cn/?p=2297 1. 苯系物吸附催化净化

研发了一系列低温性能优异的Pd基(Pd/AC、Pd/Al2O3、Pd/Co3O4等)催化剂,实现了苯系物的高效净化。其中,Pd/AC催化剂具备优异的吸附和催化苯系物性能,建立了常温吸附-高温原位催化氧化协同去除苯系物的新方法,该方法将传统去除低浓度VOCs的“吸附-脱附-氧化”简化为“吸附-原位氧化”过程。Pd基催化剂中金属态Pd0催化氧化苯系物的活性往往高于氧化态的Pd;经H2或者NaBH4还原处理后,Pd均被还原为金属态Pd0,从而提高了对苯系物的催化氧化性能。以三维介孔结构的Co3O4为载体合成Pd/Co3O4催化剂,有利于活性中心Pd的分散,提高了低温催化氧化苯系物活性。为了降低成本,我们也开展了不同形貌CeO2催化氧化苯系物的研究,发现CeO2纳米材料具有与贵金属相媲美的高活性,并揭示了CeO2氧空位在苯系物催化氧化中的关键作用。以上成果为低温高效、低成本的苯系物净化催化剂研发提供了新思路。(Appl. Catal. B, 2013, 142-143, 72; Catal. Sci. Technol., 2016, 6, 4840; Sci. Rep., 2017, 7, 12845)

吸附-高温原位催化氧化低温高效协同去除苯系物
三维介孔结构的Pd/Co3O4催化剂具有优异的催化氧化苯系物性能

2. 非热等离子体催化协同去除苯系物

开展了非热等离子体-催化协同去除苯系物的研究,发现不同锰前躯体制备的系列Mn/Al催化剂的存在大大提高了苯系物的转化率和CO2的选择性,有效抑制了等离子体放电过程中O3和NOx副产物的产生。其中,以醋酸锰为前驱体制备的催化剂促进作用最为显著。(Chem. Eng. J., 2016, 288, 406; J. Phys. Chem. C, 2016, 120, 6136)

非热等离子体-Mn基催化剂室温下协同去除苯系物

3. 苯系物电催化氧化

首次将气固相电化学氧化法用于室内空气苯系物室温净化。采用膜电极组装的全固体电解池,外加2V的电压条件下即可将气态苯系物氧化为COx (CO2、CO) 和水,CO2选择性超过85%。通过检测发现,水蒸气在电极表面放电产生的羟基自由基(·OH )是诱导苯系物氧化的活性物种。该方法可以氧化消除多种苯系物,因此具有广谱性和应用前景。该方法的提出为室内气体苯系物的消除提供新思路。(Chem. Eng. J., 2018, 354, 93; Chemosphere, 2019, 217, 780)

实验条件:Pcell=2.0V,苯系物浓度为40ppm,RH=60%,气体流速为200mL/min,V=2.0L

室温气固相电化学氧化法高效转化苯系物为CO2及无有机副产物验证

相关论文

  1. 24.Hua Deng, Shunyu Kang, Jinzhu Ma*, Lian Wang, Changbin Zhang, Hong He, “Role of structural defects in MnOx promoted by Ag doping in the catalytic combustion of volatile organic compounds and ambient decomposition of O3”, Environ. Sci. Technol., 53, (2019) 10871-10879.

  2. 23.Bo Zhang, Min Chen, Changbin Zhang*, Hong He, “Electrochemical oxidation of gaseous benzene on a Sb-SnO2/foam Ti nano-coating electrode in all-solid cell”, Chemosphere217, (2019) 780-789.

  3. 22.Lian Wang, Guangyan Xu, Jinzhu Ma, Yunbo Yu, Qingxin Ma, Kuo Liu, Changbin Zhang*, Hong He, “Nanodispersed Mn3O4/Al2O3 for NO2 elimination at room temperature”, Environ. Sci. Technol., 53, (2019) 10853-10862.

  4. 21.Bo Zhang, Min Chen, Lian Wang, Xu Zhao, Renzhi Hu, Hao Chen, Pinhua Xie, Changbin Zhang*, Hong He, “Electrochemical oxidation of volatile organic compounds in all-solid cell at ambient temperature”, Chem. Eng. J., 354, (2018) 93-104.

  5. 20.Hua Deng, Shunyu Kang, Jinzhu Ma*,Changbin Zhang, Hong He, “Silver incorporated into cryptomelane-type manganese oxide boosts the catalytic oxidation of benzene”, Appl. Catal. B, 239, (2018) 214-222.

  6. 19.Hua Deng, Shunyu Kang, Chunying Wang,Hong He*, Changbin Zhang* “Palladium supported on low-surface-area fiber-based materials for catalytic oxidation of volatile organic compounds”, Chem. Eng. J., 348, (2018) 361-369.

  7. 18.Yafei Wang, Changbin Zhang*,Hong He*, “Insight into the role of Pd state on Pd-based catalysts in o-xylene oxidation at low temperature”, ChemCatChem, 10(5), (2018) 2670-2682.

  8. 17.Lian Wang, Yunbo Yu*, Hong He*, Yan Zhang, Xiubo Qin, Baoyi Wang, “Oxygen vacancy clusters essential for the catalytic activity of CeO2 nanocubes for o-xylene oxidation”, Sci. Rep., 7, (2017) 12845.

  9. 16.胡凌霄,王莲,王飞,张长斌*,贺泓*, “Pd/γ-Al2O3催化剂催化氧化邻-二甲苯”, 物理化学学报, 33(8), (2017) 1681-1688.

  10. 15.Lian Wang, Yafei Wang, Yan Zhang, Yunbo Yu*, Hong He*, Xiubo Qin, Baoyi Wang, “Shape dependence of nanoceria on complete catalytic oxidation of o-xylene”, Catal. Sci. Technol., 6, (2016) 4840-4848.

  11. 14.Lian Wang, Changbin Zhang*, Hong He, Fudong Liu, Caixia Wang, “Effect of doping metals on OMS-2/-Al2O3 catalysts for plasma catalytic removal of o-xylene”, J. Phys. Chem. C, 120, (2016), 6136-6144.

  12. 13.Lian Wang, Hong He*, Changbin Zhang, Yafei Wang, Bo Zhang, “Effects of precursors for manganese-loaded -Al2O3 catalysts on plasma-catalytic removal of o-xylene”, Chem. Eng. J., 288, (2016) 406-413.

  13. 12.Jie Zhang, Changbin Zhang*, Hong He*, “Remarkable promotion effect of trace sulfation on OMS-2 nanorod catalysts for the catalytic combustion of ethanol”, J. Environ. Sci., 35 (1), (2015) 69-75.

  14. 11.张洁,张江浩,张长斌,贺泓*, “不同晶相结构二氧化锰催化完全氧化乙醇”,物理化学学报31(2), (2015) 353-359.

  15. 10.Yafei Wang, Changbin Zhang, Yunbo Yu, Renliang Yue, Hong He*, “Ordered mesoporous and bulk Co3O4 supported Pd catalysts for catalytic oxidation of o-xylene”, Catal. Today, 242, (2015) 294-299.

  16. 9.Yafei Wang, Changbin Zhang, Fudong Liu, Hong He*, “Well-dispersed palladium supported on ordered mesoporous Co3O4 for catalytic oxidation of o-xylene”, Appl. Catal. B, 142-143 (2013) 72-79.

  17. 8.Shaoyong Huang, Changbin Zhang*, Hong He, “Effect of pretreatment on Pd/Al2O3 catalyst for catalytic oxidation of o-xylene at low temperature”, J. Environ. Sci., 2013, 25(6) 1206-1212.

  18. 7.Lian He, Yunbo Yu*,Changbin Zhang, Hong He*, “Complete catalytic oxidation of o-xylene over CeO2 nanocubes”, J. Environ. Sci., 23, (2011) 160-165.

  19. 6.Bo Zhang, Changbin Zhang*, Hong He*, Yunbo Yu, Lian Wang, Jie Zhang, “Electrochemical synthesis of catalytically active Ru/RuO2 core-shell nanoparticles without stabilizer”, Chem. Mater., 22, (2010) 4056-4061.

  20. 5.Shaoyong Huang, Changbin Zhang, Hong He*, “In situ adsorption-catalysis system for the removal of o-xylene over an activated carbon supported Pd catalyst”, J. Environ. Sci., 21, (2009) 985-990.

  21. 4.Shaoyong Huang, Changbin Zhang, Hong He*, “Complete oxidation of o-xylene over Pd/Al2O3 catalyst at low temperature”, Catal. Today, 139, (2008)15-23.

  22. 3.黄韶勇, 张长斌,贺泓*, “Pd/AC催化剂制备及其催化完全氧化邻-二甲苯性能”, 工业催化, 16, (2008) 38-45.

  23. 2.王静, 吴银素*, 黄韶勇, 马子川, 贺泓, “γ-Al2O3负载的Pt, Pd催化剂上邻二甲苯的深度催化氧化”, 河北师范大学学报, 32, (2008) 73-77.

  24. 1.Lin Li, Changbin Zhang, Hong He, Junxin Liu*, “An integrated system of biological and catalytic oxidation for the removal of o-xylene from exhaust”, Catal.Today, 126, (2007) 338-344.

相关专利

  1. 6.贺泓, 张博, 张长斌, 王少莘,用于气-固相电催化反应的反应器及其消除VOCs的方法,申请日期:2016.11.9,授权公告日:2019.05.07,发明专利号:201611003102.4。

  2. 5.贺泓,张博,张长斌,王少莘,一种电催化电极、其制备方法及用途,申请日:2016年11月9日,授权公告日:2019.04.19,发明专利号:ZL201610984459.9。

  3. 4.贺泓,王亚飞,张长斌,王少莘,一种用于催化氧化挥发性有机物的介孔金属氧化物负载钯催化剂,申请日期:2011.12.12, 授权公告日:2016.08.10,发明专利号:ZL 201110415330.3。 

  4. 3.贺泓,张洁,张长斌,一种用于催化氧化乙醇的锰基氧化物催化剂、制备方法及其用途,申请日期:2012.12.25,授权公告日: 2015.9.23,发明专利号:ZL201210573069.4。

  5. 2.贺泓,张博,王莲,王少莘,一种能够稳定分散在水中的钌纳米颗粒的制备方 法,申请日:2008.12.09,授权公告日:2011.6.15,发明专利号:ZL  200810239425.2。

  6. 1.贺泓,胡凌霄,张长斌,王莲,张博,王少莘,一种贵金属负载型ZSM-5分子筛及其制备方法和应用,专利申请号:201611031090.6,申请日:2016年11月22日。 

]]>
大气非均相反应和吸湿性研究 http://hehong.zen.com/?p=2192 Fri, 31 Jan 2020 22:48:21 +0000 http://hehong.rcees.ac.cn/?p=2192 大气颗粒物表面的非均相反应过程,既会影响气态污染物的源汇平衡,也会改变颗粒物的微观组成和性质(吸湿性和消光性质等),在灰霾形成过程中具有重要作用。然而,在大气复合污染条件下,颗粒物表面的非均相反应过程中是否存在新的机制并不清楚。因此,亟待开展多种污染物在大气非均相反应过程中的相互影响及复合效应的研究,揭示复合污染条件下二次粒子的生成机制,为阐明我国大气复合污染成因提供科学依据。

1. 大气非均相反应中复合效应的研究进展

1.1. 首次发现了共存的NOx可以极大地促进SO2和亚硫酸盐向硫酸盐的转化,揭示了NO2和矿质氧化物共同催化活化分子氧,并促进硫酸盐的形成(JPCA, 2008, 112, 6630; PCCP, 2012, 14(5), 1668; PCCP, 2013, 15, 19196);

1.2. 进一步证实了SO2可以极大促进NO2在MgO表面转化为HONO,该过程可能是大气中HONO的潜在来源(EST, 2017, 51, 3767);

1.3. 系统研究了SO2和NH3在矿质氧化物表面非均相反应过程中的相互促进作用机制,揭示了这一过程是大气中硫酸盐和铵盐形成的重要途径(PCCP, 2016, 18 (2), 956; JPCA 2018, 122 (30), 6311; ESNano, 2019, 6, 2749 (HOT Article);AE, 2019, 208: 133);

1.4. 液相反应中共存NH3促进SO2溶解,离子强度改变NO2氧化SO2的速率常数,进而加速硫酸盐形成(EP, 2019, 252, 236);

1.5. 北京地区冬季强霾期间的监测数据分析结果表明,成霾期间共存矿质颗粒物和高浓度NOx是促进SO2转化为硫酸盐的关键因素。复合污染条件下,SO2的环境容量下降,导致硫酸盐快速增长致霾(SR, 2014(4): 04172;EP, 2018, 233, 662)。

无机污染气体在矿质氧化物表面复合效应机制

2. 颗粒物吸湿性及吸湿过程中的复合效应研究进展

2.1. 建立了基于压力平衡法的水蒸气吸附仪(JPCA, 2010, 114, 4232)和吸湿性差分电迁移率分析仪HTDMA(ACS Earth and Space Chemistry, 2019, 3(7), 1216),结合原位红外光谱和拉曼光谱等手段,研究了非均相反应对颗粒物吸湿性的促进作用及其机制(PCCP, 2012, 14 (23), 8403; JES, 2010, 22 (4), 555; 2012, 24(1), 62);

2.2. 揭示了多相过程中的复合效应改变大气中硫酸盐的赋存形式,是大气中二次石膏形成的关键机制(PCCP, 2013, 15, 19196);

2.3. 发现了有机-无机混合颗粒物吸湿过程中存在液相反应,阐明了弱酸置换强酸的内在机制 (EST, 2013, 47(18), 10381; AE, 2012, 50, 97; 2013, 69, 281; 2019, 200, 34)。

3. 黑碳表面的非均相过程研究进展

3.1. 在不同燃氧比条件下制备了甲苯、正己烷和癸烷燃烧的黑碳样品。基于组成和吸湿性表征,发现正己烷和癸烷黑碳的亲水性随燃氧比减小而增大,平均粒径 和有机碳含量随燃氧比减小而降低,黑碳的聚集形态不受燃氧比影响。基于红外 光谱和拉曼光谱的分析,发现亲水性官能团主要位于黑碳结构中的石墨层边缘和 表面石墨层。(JPCA, 2012, 116, 4129)

3.2. 利用原位拉曼光谱研究 O3 与黑碳的非均相反应,发现O3老化导致黑碳微晶有序度降低,无序碳和无定型碳为臭氧化反应活性位点。 O3老化使得黒碳表面含氧官能团含量升高,光照可以进一步增强O3对黒碳的老化。(PCCP, 2010, 12, 10896; JPC, 2012, 137, 084507; PCCP, 2016, 18, 24401)

臭氧对黑碳的老化

3.3. 发现 NO2 摄取系数和 HONO 产率随燃氧比减小而减小,有机碳(OC) 是 NO2 老化过程中的主要活性组分。光照可以进一步增强老化作用,并证明黒碳表面含氮物种的光解是大气中HONO的一个重要来源。(EST, 2013, 47, 3174; AE, 2013, 64, 270)

NO2对黑碳的老化

3.4. 发现可见光可激发分子 O2 与黑碳的非均相化学反应,导致黑碳表面生成各种含氧官能团,有机碳(OC)是参与老化反应的主要活性组分。(PNAS, 2012, 109, 21250)

O2对黑碳的老化

3.5. 发现黒碳可以催化O2氧化SO2向硫酸盐的转化,并通过理论计算揭示了其催化反应机理。分子O2可以在黒碳表面的醚键位点(C-O-C)常温下裂解为环氧基,环氧基进而实现对SO2的直接氧化。 (AE, 2016, 142, 383; PCCP, 2016, 18, 31691; AE, 2017, 152, 465; ACS Catal, 2018, 8, 3825)

黑碳对硫酸盐形成的催化作用

相关论文:

53) Biwu Chu, Yali Wang, Weiwei Yang, Jinzhu Ma, Qingxin Ma*, Peng Zhang, Yongchun Liu, Hong He, “Effects of NO2 and C3H6 on the heterogeneous oxidation of SO2 on TiO2 in the presence or absence of UV-Vis irradiation.” Atmos. Chem. Phys., 19, (2019) 14777-14790.

52) Shuping Zhang, Jia Xing*, Golam Sarwar, Yanli Ge, Hong He, Fengkui Duan, Yan Zhao, Kebin He, Lidan Zhu, Biwu Chu*, “Parameterization of heterogeneous reaction of SO2 to sulfate on dust with coexistence of NH3 and NO2 under different humidity conditions”, Atmos. Environ., 208, (2019) 133-140.

51) Qingxin Ma, Cheng Zhong, Chang Liu, Jun Liu, Jinzhu Ma, Lingyan Wu, Hong He*, “A comprehensive study about the hygroscopic behavior of mixtures of oxalic acid and nitrate salts: Implication for the occurrence of atmospheric metal oxalate complex”, ACS Earth. Space Chem., 3, (2019) 1216-1225.

50) Qingxin Ma*, Ling Wang, Biwu Chu, Jinzhu Ma, Hong He*, “Contrary role of H2O and O2 in the kinetics of heterogeneous photochemical reactions of SO2 on TiO2”, J. Phys. Chem. A., 123, (2019) 1311-1318.

49) Qingxin Ma, Chang Liu, Jinzhu Ma, Biwu Chu, Hong He*, “A laboratory study on the hygroscopic behavior of H2C2O4-containing mixed particles”, Atmos. Environ., 200, (2019) 34-39.

48) Tianzeng Chen, Biwu Chu*, Yanli Ge, Shuping Zhang, Qingxin Ma, Hong He, Shao-Meng Li, “Enhancement of aqueous sulfate formation by the coexistence of NO2/NH3 under high ionic strengths in aerosol water”, Environ. Pollut., 252, (2019), 236-244.

47) 王铃,马庆鑫*,贺泓,“光照对SO2在矿质氧化物表面非均相反应的影响”环境科学38 (3), (2018) 1-2.

46) Weiwei Yang, Qinxin Ma*, Yongchun Liu, Jinzhu Ma, Biwu Chu, Ling Wang, Hong He, “Role of NH3 in the heterogeneous formation of secondary inorganic aerosols on mineral oxides”, J. Phys. Chem. A, 122, (2018) 6311-6320.

45) Guangzhi He, Jinzhu Ma,Hong He*, “Role of carbonaceous aerosols in catalyzing sulfate formation”, ACS. Catal., 8, (2018) 3825-3832.

44) Jinzhu Ma, Biwu Chu, Jun Liu, Yongchun Liu, Hongxing Zhang,Hong He*, “NOX promotion of SO2 conversion to sulfate: An important mechanism for the occurrence of heavy haze during winter in Beijing”, Environ. Pollut., 233, (2018) 662-669.

43) Chang Liu, Qingxin Ma,Hong He*, Guangzhi He, Jinzhu Ma, Yongchun Liu, Ying Wu, “Structure-activity relationship of surface hydroxyl groups during NO2 adsorption and transformation on TiO2 nanoparticles”, Environ. Sci. Nano., 4, (2017) 2388-2394.

42) Qingxin Ma*, Tao Wang*, Chang Liu, Hong He, Zhe Wang, Weihan Wang, Yutong Liang, “SO2 initiates the efficient conversion of NO2 to HONO on MgO surface”, Environ. Sci. Technol., 51, (2017) 3767-3775.

41) Weiwei Yang, Jianghao Zhang, Qingxin Ma*, Yan Zhao, Yongchun Liu, Hong He*, “Heterogeneous reaction of SO2 on manganese oxides: the effect of crystal structure and relative humidity”, Sci. Rep., 7, (2017) 4550.

40) Chong Han, Yongchun Liu, Hong He*, “Heterogeneous reaction of NO2 with soot at different relative humidity”, Environ. Sci. Pollut. Res., 24, (2017) 21248-21255.

39) Yan Zhao, Yongchun Liu*, Jinzhu Ma, Qingxin Ma, Hong He*, “Heterogeneous reaction of SO2 with soot: the roles of relative humidity and combustion conditions in sulfuric acid formation”, Atmos. Environ., 152, (2017) 465-476.

38) Guangzhi He, Hong He*, “DFT studies on the heterogeneous oxidation of SO2 by oxygen functional groups on grapheme”, Phys. Chem. Chem. Phys., 18, (2016) 31691-31697.

37) Yan Zhao, Qingxin Ma, Yongchun Liu, Hong He*, “Influence of sulfur in fuel on the properties of diffusion flame soot”, Atmos. Environ., 142, (2016) 383-392.

36) Chong Han, Yongchun Liu, Hong He*, “The photoenhanced aging process of soot by the heterogeneous ozonization reaction”, Phys. Chem. Chem. Phys., 18, (2016) 24401-24407.

35) Weiwei Yang , Hong He* , Qingxin Ma , Jinzhu Ma , Yongchun Liu , Pengfei Liu, Yujing Mu, “Synergistic formation of sulfate and ammonium resulting from reaction between SO2 and NH3 on typical mineral dust”, Phys. Chem. Chem. Phys., 18, (2016) 956-964.

34) Biwu Chu, Tengyu Liu, Xiao Zhang, Yongchun Liu, Qingxin Ma, Jinzhu Ma, Hong He*, Xinming Wang, Junhua Li, Jiming Hao, “Secondary aerosol formation and oxidation capacity in photooxidation in the presence of Al2O3 seed particles and SO2”, Sci. China-Chem., 58 (9), (2015) 1426-1434.

33) 马庆鑫,马金珠,楚碧武,刘永春,赖承钺,贺泓*,“矿质和黑碳颗粒物表面大气非均相反应研究进展”, 科学通报,60(2),(2015)122-136.

32) Yongchun Liu, Chong Han, Jinzhu Ma, Xiaolei Bao, Hong He*, “Influence of relative humidity on heterogeneous kinetics of NO2 on kaolin and hematite”,   Phys. Chem. Chem. Phys., 17, (2015) 19424-19431.

31) Chengyue Lai, Yongchun Liu*, Jinzhu Ma, Qingxin Ma, Biwu Chu, and Hong He*, “Heterogeneous kinetics of cis-pinonic acid with hydroxyl radical under different environmental conditions”, J. Phys. Chem. A, 119, (2015) 6583-6593.

   

30) Chengyue Lai, Yongchun Liu*, Jinzhu Ma, Qingxin Ma, Hong He*, “Laboratory study on OH-initiated degradation kinetics of dehydroabietic acid”, Phys. Chem. Chem. Phys., 17, (2015) 10953-10962.

29) Chengyue Lai, Yongchun Liu*, Jinzhu Ma, Qingxin Ma, Hong He*, “Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions”, Atmos. Environ., 91, (2014) 32-39.

28) Biwu Chu, Kun Wang, Hideto Takekawa, Junhua Li, Wei Zhou, Jingkun Jiang, Qingxin Ma, Hong He, Jinming Hao*, “Hygroscopicity of particles generated from photooxidation of α-pinene under different oxidation conditions in the presence of sulfate seed aerosols”, J. Environ. Sci., 26, (2014) 129-139.

27) Hong He*, Yuesi Wang*, Qingxin Ma, Jinzhu Ma, Biwu Chu, Dongsheng Ji, Guiqian Tang, Chang Liu, Hongxing Zhang, Jiming Hao, “Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days”, Sci. Rep., 4, (2014) 04172. 

26) Qingxin Ma, Hong He*, Yongchun Liu, Chang Liu, Vicki H. Grassian, “Heterogeneous and multiphase formation pathways of gypsum in the atmosphere”, Phys. Chem. Chem. Phys., 15, (2013) 19196-19204.

25) Qingxin Ma, Jinzhu Ma, Chang Liu, Chengyue Lai, Hong He*, “Laboratory study on the hygroscopicbehavior of external and internal C2−C4 dicarboxylic Acid−NaCl mixtures”, Environ. Sci. Technol., 47, (2013) 10381-10388.

24) Qingxin Ma, Hong He*, Chang Liu, “Hygroscopic properties of oxalic acid and atmospherically relevant oxalates”, Atmos. Environ., 69, (2013) 281-288.

23) Chong Han, Yongchun Liu, Hong He*, “Role of Organic Carbon in     Heterogeneous Reaction of NO2 with Soot”, Environ. Sci. Technol., 47, (2013) 3174-3181.

22) Jinzhu Ma, Yongchun Liu, Chong Han, Qingxin Ma, Chang Liu, Hong He*, “Review of heterogeneous photochemical reactions of NOy on aerosol – A possible daytime source of nitrous acid (HONO) in the atmosphere”, J. Environ. Sci., 25, (2013) 326-334.

21) Jinzhu Ma, Yongchun Liu, Qingxin Ma, Chang Liu, Hong He*,“Heterogeneous photochemical reaction of ozone with anthracene adsorbed on mineral dust”,  Atmos. Environ., 72, (2013) 165-170.

20) Chong Han, Yongchun Liu*, Hong He*, “Heterogeneous photochemical aging of soot by NO2 under simulated sunlight”, Atmos. Environ., 64, (2013) 270-276.

19) Chong Han, Yongchun Liu*, Jinzhu Ma, Hong He*, “Key role of organic carbon in the sunlight enhanced atmospheric aging of soot by O2”, Proc. Nat. Acad. Sci. USA., 109(52), (2012) 21250-21255.

18) Yongchun Liu, Qingxin Ma, Hong He*, “Heterogeneous Uptake of Amines by Citric Acid and Humic Acid”, Environ. Sci. Technol., 46, (2012) 11112-11118.

17) Chong Han, Yongchun Liu*, Jinzhu Ma, Hong He*, “Effect of soot microstructure on its ozonization reactivity”, J. Chem. Phys., 137, (2012) 084507.

16) Yongchun Liu, Chong Han, Chang Liu, Jinzhu Ma, Qingxin Ma, Hong He*, “Differences in the reactivity of ammonium salts with methylamine”, Atmos. Chem. Phys., 12, (2012) 4855-4865.

15) Qingxin Ma, Yongchun Liu, Chang Liu, Hong He*, “Heterogeneous reaction of acetic acid on MgO, a-Al2O3, and CaCO3 and the effect on the hygroscopic behaviour of these particles”, Phys. Chem. Chem. Phys., 14, (2012) 8403-8409.  

 

14)Chong Han, Yongchun Liu*, Chang Liu, Jinzhu Ma, Hong He*, “Influence of combustion conditions on hydrophilic properties and microstructure of flame soot”, J. Phys. Chem. A, 116, (2012) 4129-4136.

13) Qingxin Ma, Yongchu Liu, Chang Liu, Jinzhu Ma, Hong He*, “A case study of Asian dust storm particles: Chemical composition, reactivity to SO2 and hygroscopic properties”, J. Environ. Sci, 24, (2012) 62-71. 

12) Qingxin Ma, Hong He*, “Synergistic effect in the humidifying process of atmospheric relevant calcium nitrate, calcite and oxalic acid mixtures”, Atmos. Environ., 50, (2012) 97-102.

11) Chang Liu, Qingxin Ma, Yongchun Liu, Jinzhu Ma, Hong He*, “Synergistic reaction between SO2 and NO2 on mineral oxides: a potential formation pathway of sulfate aerosol. Phys. Chem. Chem. Phys., 14, (2012) 1668-1676.   

10) 马金珠、刘永春、马庆鑫、刘畅、贺泓*, “大气非均相反应及其环境效应”, 环境化学, 30, (2011) 97-119.

9) Jinzhu Ma, Yongchun Liu, Hong He*, “Heterogeneous reactions between NO2 and anthracene adsorbed on SiO2 and MgO ”, Atmos. Environ., 45, (2011) 917-924.

8) Jinzhu Ma, Yongchun Liu, Hong He*, “Degradation kinetics of anthracene by ozone on mineral oxides”, Atmos. Environ., 44, (2010) 4446-4453.    

   

7) Yongchun Liu, Chang Liu, Jinzhu Ma, Qingxin Ma, Hong He*, “Structural and hygroscopic changes of soot during heterogeneous reaction with O3”, Phys. Chem. Chem. Phys., 12, (2010) 10896-10903.

6) Qingxin Ma, Yongchun Liu, Chang Liu, Jinzhu Ma, Hong He*, “A comprehensive characterisation of Asian dust storm particles: chemical composition, reactivity to SO2, and hygroscopic property”, Atmos. Chem. Phys. Discuss., 10, (2010) 8899-8925.

5) Qingxin Ma, Hong He*,Yongchun Liu, “In situ DRIFTS study of hygroscopic  behavior of mineral aerosol ”, J. Environ. Sci., 22, (2010) 555-560.

4)Qingxin Ma, Yongchun Liu, Hong He*, “The utilization of physisorption analyzer for studying the hygroscopic properties of atmospheric relevant particles”, J. Phys. Chem. A, 114, (2010) 4232-4237.

3) Yongchun Liu, Qingxin Ma, Hong He*, “Comparative study of the effect of water on the heterogeneous reactions of carbonyl sulfide on the surface of α-Al2O3 and MgO” , Atmos. Chem. Phys., 9, (2009) 6273-6286.

2) 贺泓*, 刘永春,曲久辉, “环境微界面过程的原位和在线研究方法”, 环境科学学报,29, (2009) 11-20.

1) Qingxin Ma, Yingchun Liu, Hong He*, “Synergistic effect between NO2 and SO2 in their adsorption and reaction on γ-Alumina”, J. Phys. Chem. A, 112, (2008) 6630-6635.

]]>
复合污染条件下的二次有机气溶胶(SOA)生成 http://hehong.zen.com/?p=2194 Sat, 25 Jan 2020 22:50:42 +0000 http://hehong.rcees.ac.cn/?p=2194 复合大气中的二次有机气溶胶(SOA)是城市和郊区细颗粒(PM2.5)的主要组成部分,平均占细颗粒有机组分质量的20~70%。SOA成分和生成过程都十分复杂,复合污染条件下SOA的生成机制还有待深入研究。

1. 主要实验设施

1.1. 30m3室内烟雾箱系统

烟雾箱系统作为研究和评价光化学反应机理的有效手段,对认识和解决局地、区域和全球尺度的大气污染问题发挥着重要作用。中国科学院生态环境研究中心(RCEES-CAS)30m3室内烟雾箱采用“箱中箱”的设计思路,主要由零空气发生系统、特氟龙膜反应器、光源系统、温度控制系统、进样与控制系统和检测系统构成。反应器设计为3.0m×2.5m×4.0m的长方体,比表面积为1.97m-1,由125μm厚的Teflon膜焊接缝合而成。采用120盏365nm的紫外灯作为主要光源,最大NO2光解速率为0.55min-1,主要用于研究复合污染条件下O3和二次气溶胶的生成机制。

RCEES-CAS 30m3室内烟雾箱实验系统

1.2. 氧化流动管实验观测系统

颗粒物生成潜势反应器(PAM)由Kang首次提出并应用,原理是通过光解进入反应器的臭氧,然后在反应器腔内产生比实际大气高几百倍甚至几千倍的OH·浓度,故而能在非常短的停留时间(几十秒到几分钟)模拟相当于在实际大气环境下几天甚至几周的VOCs氧化过程。研究组设计搭建了由两个体积均为15 L的不锈钢圆筒组成的孪生氧化流动管反应器(OFR),主要用来研究SOA的生成和老化过程以及实际环境大气SOA生成潜势的变化趋势与影响因素(JES, 2016, 39, 52-61)。

孪生氧化流动管反应系统(OFR)

2. 复合污染条件对SOA生成的影响

2.1. 矿质颗粒物种子对SOA生成的影响

对矿质颗粒物影响光化学反应SOA生成的研究表明, Al2O3种子SOA产率影响不明显,但显著影响SOA粒径分布。高浓度Al2O3种子有可能使颗粒物粒数浓度明显增大,而粒径明显减小,进而增大颗粒物的大气寿命,加剧其人体健康风险,并改变其消光特性(AE, 2013, 77: 781, Sci. China-Earth Sci., 2015, 58(2), 245)。复合污染条件下,矿质颗粒物表面污染物之间的协同效应可能通过改变大气氧化能力进而改变二次颗粒物生成对前体物的敏感性,例如Al2O3种子存在条件下,高NOx条件下SOA的生成可能高于低NOx条件(Sci. China-Chem., 2015, 58(9), 1426)。

矿质颗粒物种子对二次颗粒生成的影响

2.2. 金属离子影响SOA气溶胶相老化过程

发现含铁硫酸盐存在条件下,其表面液相中的铁离子与过氧化物种发生类似Fenton反应,在气溶胶相产生活性氧物种,导致部分SOA组分的挥发性升高,重新分配到气相,从而减少SOA产量,并使得SOA的氧化程度升高 (AE, 2012, 55, 26, EP, 2014, 193: 88)。这两种效应的相对重要性和不同体系生成的SOA本身的化学特性密切相关(SR, 2017, 7: 40311)。这些研究结果有助于解释实验室模拟中SOA氧化程度普遍低于外场观测数据的现象。同时发现无机气溶胶种子还会影响反应生成的SOA的吸湿性,进而影响其致霾能力(JES, 2014, 26 (1): 129)。

含铁硫酸盐抑制SOA生成现象及反应机制

2.3. 共存无机气体对SOA生成的影响

课题组开展了大气二次颗粒物生成中无机和有机致霾前体物的复合效应研究。发现二氧化硫和氨气等无机污染气体对二次无机颗粒物和二次有机气溶胶(SOA)生成均有重要贡献,贫氨条件下,SO2主要通过生成酸性气溶胶进而通过酸催化作用促进低聚物的形成提高SOA产率,而富氨条件下,SO2和NH3可显著增加SOA中含氮有机物和有机硫酸脂的生成,同时促进小分子高级氧化产物的摄取,进而导致SOA氧化态的增加。针对单一VOCs组分(如单环芳烃类)、特征排放源(如机动车蒸发排放源)以及含氧VOCs (如生物质标记物甲氧基苯酚类和烯醚烯酯等中间态含氧VOCs)的研究中都发现了SO2和NH3对SOA生成的协同促进作用(ACP, 2016, 16(22), 14219; ACP, 2019, 19, 8063; EST, 2019, 53 (15), 8845; ACP, 2019, 19, 2687; ACP, 2019, 19, 2001; AE, 2019, 207, 30)。复合污染条件下一些排放源对我国大气中SOA的贡献不容忽视(如机动车蒸发排放源SOA生成贡献达0.49±0.04 Tg yr-1) (AE, 2019, 201, 101; ACP, 2019, 19, 8063)。

共存SO2促进二次颗粒物生成的复合效应

3. SOA生成中的氧化机制研究

3.1. 在低前体物浓度条件下,VOCs光氧化过程的中间气相产物会提前转化为高级氧化产物,SOA产率明显高于高浓度条件。这可能是目前模式研究中普遍低估SOA环境浓度的原因之一(JES, 2019, 79, 256)。

3.2. 在复合污染条件下,含氧VOCs氧化过程中有机硫酸酯的形成和小分子高级氧化产物的摄取被证明是导致SOA氧化态随SO2浓度升高而增加的关键原因。此外,大气环境中烯烃臭氧化形成的克里奇中间体(sCI)与水和SO2的竞争性反应也可以显著影响SOA产率及其组成(EST, 2019, 53 (15), 8845;ACP, 2019, 19, 2687)。

VOCs深度氧化过程导致更多的SOA生成

4. SOA外场观测研究

4.1. 利用OFR实验观测系统对城市环境空气的SOA生成潜势的研究表明,北京城市SOA生成潜势远高于其他发达国家,且随环境中的PM2.5浓度增加而显著增加。一般情况下,北京城市大气SOA生成达到最大时对应的老化时间在3天左右;但重污染条件下,有机气溶胶难以因过度氧化而出现浓度下降,从而出现长时间地持续生成(JES, 2016, 39, 52, EST, 2018, 52 (12): 6834)。

不同污染程度下大气SOA生成随老化时间的变化规律

4.2. 北京南郊夏季的外场观测结果表明,有机气溶胶(OA)是细颗粒物的主要组分,其元素日变化特征和氧化程度受光化学过程和液相化学过程共同影响,其中SOA的贡献占主导地位且随污染程度的增加而增加(Chemosphere, 2020, 247, 125918)。

北京南郊夏季细颗粒物和不同氧化程度OA的变化特征

相关论文:

19) Tianzeng Chen, Jun Liu, Yongchun Liu, Qingxin Ma*, Yanli Ge, Cheng Zhong, Haotian Jiang, Biwu Chu, Peng Zhang, Jinzhu Ma, Pengfei Liu, Yafei Wang, Yujing Mu, Hong He. Chemical characterization of submicron aerosol in summertime Beijing: a case study in southern suburbs in 2018, Chemosphere, 247, (2020) 125918.

18) Peng Zhang, Tianzeng Chen, Jun Liu, Changgeng Liu, Jinzhu Ma, Qingxin Ma, Biwu Chu, Hong He*, “Relative humidity, and seed acidity on secondary organic aerosol formation in the ozonolysis of butyl vinyl ether”, Environ. Sci. Technol., 53, (2019) 8845-8853.

17) Changgeng Liu, Yongchun Liu*, Tianzeng Chen, Jun Liu, Hong He*, “Rate constant and secondary organic aerosol formation from the gas-phase reaction of eugenol with hydroxyl radicals”, Atmos. Chem. Phys., 19, (2019) 2001-2013.


16) Changgeng Liu, Tianzeng Chen, Yongchun Liu*, Jun Liu, Hong He*, Peng Zhang, “Enhancement of secondary organic aerosol formation and its oxidation state by SO2 during photooxidation of 2-methoxyphenol”, Atmos. Chem. Phys., 19, (2019) 2687-2700.

15) Changgeng Liu, Jun Liu, Yongchun Liu*, Tianzeng Chen, Hong He*, “Secondary organic aerosol formation from the OH-initiated oxidation of guaiacol under different experimental conditions”, Atmos. Environ., 207, (2019) 30-37.

14) Tianzeng Chen, Yongchun Liu, Qingxin Ma*, Biwu Chu, Peng Zhang, Changgeng Liu, Jun Liu, Hong He*, “Significant source of secondary aerosol: formation from gasoline evaporative emissions in the presence of SO2 and NH3”, Atmos. Chem. Phys., 19, (2019), 8063-8081.

13) Tianzeng Chen, Yongchun Liu*, Changgeng Liu, Jun Liu, Biwu Chu, Hong He*, “Important role of aromatic hydrocarbons in SOA formation from unburned gasoline vapor”, Atmos. Environ., 201, (2019), 101-109.

12) Tianzeng Chen, Yongchun Liu*, Biwu Chu, Changgeng Liu, Jun Liu, Yanli Ge, Qingxin Ma, Jinzhu Ma, Hong He*, “Differences of the oxidation process and secondary organic aerosol formation at low and high precursor concentrations”, J. Environ. Sci., 79, (2019), 256-263.

11) 刘俊,楚碧武*,贺泓,“北京市二次有机气溶胶生成潜势的日变化规律”环境科学39 (2), (2018) 2505-2511.

10) Jun Liu, Biwu Chu*, Tianzeng Chen, Changgeng Liu, Ling Wang, Xiaolei Bao, Hong He*, “Secondary organic aerosol formation from ambient air at an urban site in Beijing: Effects of OH exposure and precursor concentrations”, Environ. Sci. Technol., 52, (2018) 6834-6841.

9) 陈天增,葛艳丽,刘永春*,贺泓,“我国机动车排放VOCs 及其大气环境影响”环境科学39 (2), (2018) 478-492.

8) Jinzhu Ma, Biwu Chu, Jun Liu, Yongchun Liu, Hongxing Zhang,Hong He*, “NOX promotion of SO2 conversion to sulfate: An important mechanism for the occurrence of heavy haze during winter in Beijing”, Environ. Pollut., 233, (2018) 662-669.

7) Biwu Chu, John Liggio, Yongchun Liu, Hong He*, Hideto Takekawa, Shao-Meng Li, Jiming Hao, “Influence of metal-mediated aerosol-phase oxidation on secondary organic aerosol formation from the ozonolysis and OH-oxidation of α-pinene”, Sci. Rep., 6, (2017) 40311.

6) Biwu Chu, Xiao Zhang, Yongchun Liu, Hong He*, Yele Sun, Jingkun Jiang, Junhua Li, Jiming Hao, “Synergetic formation of secondary inorganic and organic aerosol: effect of SO2 and NH3 on particle formation and growth”, Atmos. Chem. Phys.,16, (2016) 14219-14230.

5) Biwu Chu, Yongchun Liu, Qingxin Ma, Jinzhu Ma, Hong He*, Gang Wang, Shuiyuan Cheng, Xinming Wang, “Distinct potential aerosol masses under different scenarios of transport at a suburban site of Beijing”, J. Environ. Sci., 39, (2016) 52-61.

4) Biwu Chu, Tengyu Liu, Xiao Zhang, Yongchun Liu, Qingxin Ma, Jinzhu Ma, Hong He*, Xinming Wang, Junhua Li, Jiming Hao, “Secondary aerosol formation and oxidation capacity in photooxidation in the presence of Al2O3 seed particles and SO2”, Sci. China-Chem., 58 (9), (2015) 1426-1434.

3) Biwu Chu, Yongchun Liu, Junhua Li, Hideto Takekawa, John Liggio, Shaomeng Li, Jingkun Jiang, Jiming Hao,Hong He*, “Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in a-pinene photooxidation”, Environ. Pollut., 193, (2014) 88-93.

2) Biwu Chu, Kun Wang, Hideto Takekawa, Junhua Li, Wei Zhou, Jingkun Jiang, Qingxin Ma, Hong He, Jinming Hao*, “Hygroscopicity of particles generated from photooxidation of α-pinene under different oxidation conditions in the presence of sulfate seed aerosols”, J. Environ. Sci., 26, (2014) 129-139.

1) Chang Liu, Biwu Chu, Yongchun Liu*, Qingxin Ma, Jinzhu Ma, Hong He*, Junhua Li, Jiming Hao, “Effect of mineral dust on secondary organic aerosol yield and aerosol size in a-pinene/NOx photo-oxidation”, Atmos. Environ., 77, (2013) 781-789.

]]>