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Abstract This review reports the research progress in the
abatement of major pollutants in air and water by
environmental catalysis. For air pollution control, the
selective catalytic reduction of NOx (SCR) by ammonia
and hydrocarbons on metal oxide and zeolite catalysts are
reviewed and discussed, as is the removal of Hg from flue
gas by catalysis. The oxidation of Volatile organic
compounds (VOCs) by photo- and thermal- catalysis for
indoor air quality improvement is reviewed. For waste-
water treatment, the catalytic elimination of inorganic and
organic pollutants in wastewater is presented. In addition,
the mechanism for the procedure of abatement of air and
water pollutants by catalysis is discussed in this review.
Finally, a research orientation on environment catalysis for
the treatment of air pollutants and wastewater is proposed.

Keywords air pollution control, wastewater treatment,
DeNOx, selective catalytic reduction (SCR), Volatile
organic compounds (VOCs), environmental catalysis

1 Introduction

Environmental protection is directly related to the sustain-
able development of economies and society. The control of
the emission of major air and water pollutants remains a
daunting challenge in China. The removal of major air
pollutants (PM, SO2, NOx, Volatile organic compounds
(VOCs) and Hg) from stationary and mobile sources is
becoming increasingly urgent for the improvement of air
quality, and the removal of thousands of industrial and
natural chemical compounds from contaminated water
systems is also critical to maintain the availability of
clean water. Therefore, cost-effective and appropriate

air-pollution-control and water-treatment technologies
must be explored and implemented.
To date, some technological options exist to control air

pollution and wastewater; however, the most efficient
method is based on the principle of environmental
catalysis. In this paper, the development of control
technologies for environmental catalysis for air-pollution
control and wastewater treatment is reviewed, and the
abatement mechanism of air and water pollutants via
catalysis is discussed.

2 Removal of NOx and Hg in flue gas by
catalysis

Air pollutants, such as NOx and Hg, are mainly emitted
from stationary sources, and the technology for control of
their emissions can be grouped into source control and end
control. The environmental catalysis method is the most
efficient way to remove NOx in end-control technology.
For example, the SCR of NOx with a reductant (typically
NH3) into water and nitrogen is an available method over a
special catalyst, which is the key factor in achieving highly
efficient NOx conversion.

2.1 The development of NH3-SCR catalysts

2.1.1 Chemical reaction and mechanism of NH3-SCR at
high temperature

The commercial catalysts for stationary sources, such as
power plants and industrial boilers, are based on a high-
temperature SCR (HT-SCR) catalyst, V2O5-WO3 (or
MoO3)/TiO2, that operates in the high-temperature range
of 350°C–430°C [1]. V2O5 is the main active component
for the catalytic reduction of NOx, whereas WO3 is used as
an additive to increase the catalytic activity and the thermal
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stability [2], and TiO2 serves as a support. In past decades,
numerous other formulations have been developed for the
SCR reaction. Because vanadium species are poisonous to
humans and to the environment, numerous researchers
have contributed to the development of non-vanadium
SCR catalysts.
At present, numerous transition metals have been

reported to be active in NOx reduction, including TiO2-
supported V2O5, Fe2O3, CuO, MnOx and CeOx catalysts
[3–10]. Among metal oxides, pure V2O5 and V2O5

supported on oxide carriers (Al2O3, SiO2, ZrO2, TiO2,
etc.) have been extensively investigated. Metal oxides
supported on active carbon have been proposed as a
competitive choice compared with the available catalysts
because of its economic efficiency. Studies have shown
that metal oxides that are active as oxidation catalysis
could mostly serve as an active component in the SCR
reaction.
In most cases, NH3 is used as the reductant in

commercial SCR plants. In the presence of O2, NH3 reacts
with NOx to form water and nitrogen according to the
general reactions:

4NOþ 4NH3 þ O2↕ ↓4N2 þ 6H2O (1)

2NO2 þ 4NH3 þ O2↕ ↓3N2 þ 6H2O (2)

In practice, the following side reactions can also occur:

4NH3 þ 3O2↕ ↓2N2 þ 6H2Oð> 350°CÞ (3)

4NH3 þ 5O2↕ ↓4NOþ 6H2Oð> 350°CÞ (4)

4NH3 þ 4O2↕ ↓2N2Oþ 6H2Oð> 350°CÞ (5)

2NH3↕ ↓N2 þ 3H2 (6)

If SO2 and H2O are present in the combustion gases, the
following reactions are possible over the catalyst:

SO2 þ 1=2 O2↕ ↓SO3 (7)

NH3 þ SO3 þ H2O↕ ↓NH4HSO4 (8)

2NH3 þ SO3 þ H2O↕ ↓ðNH4Þ2SO4 (9)

SO3 þ H2O↕ ↓H2SO4 (10)

Even small amounts of SO2 and H2O are highly
undesirable because they cause the deposition and
accumulation of ammonium sulfate salts on the catalyst
(if the temperature of the catalyst is not sufficiently high)
and on the air-pre-heater downstream from the catalytic
reactor.
Acidity and redox properties are both considered to be

important parameters for SCR catalysts. Topsøe et al. [11]
proposed the mechanistic scheme shown in Fig. 1. In this

mechanism, the catalytic performance is related to the NH3

adsorbed on the Brønsted acid sites associated with V5+-
OH sites. The catalytic cycle consists of both acid–base
and redox reactions.

2.1.2 Recent developments in LT-SCR catalysts

Although SCR technology based on vanadia catalysts has
been introduced into the market for the removal of NOx

from flue gas, some problems still remain due to the
toxicity of active vanadium, the significant amount of N2O
formed at high temperatures, and the high activity toward
the oxidation of SO2 to SO3 [12]. Low-temperature SCR
(LT-SCR) catalysts, which can work well at approximately
250°C or at even lower temperatures and allow the SCR
unit be placed behind the desulfurizer in a power plant,
have attracted much attention in the academic and
industrial field. Hence, many researchers continue to
develop new LT-SCR catalysts. The development of this
type of catalyst has been well summarized in a recent
review [13]. Some vanadium free transition-metal-based
oxide catalysts, such as FeTiOx [14], CuOx/WOx-ZrO2

[15], WO3/CeO2-ZrO2 [16] and Ce/TiO2 [17,18], have also
been reported as potential substitutes of vanadium-based
catalysts. Recently, Ce-W-Ti and Ce-W mixed oxide
catalysts, which showed excellent NH3-SCR activity and
high N2 selectivity over a wide range of operating
temperatures and extremely high resistance to space
velocity have been reported [19,20].
The development of LT-SCR catalysts for the removal of

NOx by NH3 is still a substantial challenge, especially at
temperatures less than 200°C. According to the literature,
many catalysts that contain transition metals (such as Fe, V,
Cu or Mn) exhibit low-temperature SCR activity, among
which, the MnOx catalyst has demonstrated excellent low-
temperature performance and has been researched exten-
sively [21].

Fig. 1 Mechanistic scheme of the catalytic cycle of the SCR
reaction over the V2O5/TiO2 catalyst in the presence of oxygen
[11]
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Kijlstra [22] has reported that the conversion rate of NOx

is 72% over a MnOx/Al2O3 catalyst at 150°C; however, the
catalyst is not stable. In the first 50 h, the conversion rate
decreases rapidly and later gradually becomes steady at
approximately 40%. The preparation method affects the
activity of Mn-based catalysts. Tang et al. [23] investigated
manganese oxide catalysts prepared using different
methods and found that the crystallinity of MnOx was
affected by the preparation method. MnOx with lower
crystallinity, such as MnOx (SP, solid-phase reaction
method) and MnOx (CP, co-precipitation method), exhib-
ited higher activity at low temperatures. The specific
surface area and oxidation state of the Mn in MnOx are
both correlated to the SCR activity to some extent [24].
The MnOx-CeO2 catalyst has been investigated exten-

sively because of its superior performance [25,26]. Qi et al.
[25] found that the Mn/(Mn+ Ce) molar ratio and
calcination temperature influence the activity significantly.
The results suggested that the reaction was zero order with
respect to NH3 and first order with respect to NO over this
catalyst. The addition of Fe, Zr [27] or Nb [28] would
improve the low-temperature activity and N2 selectivity.
Various support materials have been employed in LT-

SCR catalysis. They can be divided into metal oxides,
carbon materials and zeolites. The dispersion of active sites
depends on the concentration of the precursor solution, the
method by which the metal is introduced, and the final
procedure of drying [29]. All of these factors correlate to
the structure and performance of the catalyst. The
development of this type of catalyst has been well
summarized in a recent review [24].
With respect to the LT-SCR reaction, many researchers

have proposed that NH3 is adsorbed onto a Lewis acid
center and that intermediates such as NH2 [27,30] and
adsorbed NH3 [31] are formed. The intermediates react
with aerial NO2 through the Eley–Rideal (E–R) mechan-
ism or with nitrite species through the Langmuir–Hinshel-
wood (L–H) mechanism [32]. The SCR mechanism at
different temperature was shown in Fig. 2. The presence of
O2 is necessary for the formation of NH2 and activated
NO2 intermediates.

2.2 Factors that affect the NH3-SCR reaction

2.2.1 Effects of H2O and SO2

The effects of water vapor can be divided into reversible
and irreversible effects. Co-adsorption with NH3 or NO on
the active sites is considered to be an important factor with
respect to H2O, which influences the catalytic activity and
the light-off temperature. For the SCR of NOx by NH3 in
the absence of SO2, the effect of H2O is not severe at high
temperatures. However, the more direct participation of
water in the mechanism of the DeNOx reaction should be
studied in the future.

When H2O and SO2 coexist, SO2 can be oxidized to SO3

and further oxidized to H2SO4 and sulfates with SCR
catalysts. The effect of SO2 originates from two aspects: 1)
corrosion of pipes and plants downstream by SO3, which is
generated from SO2 oxidation; 2) covering of the active
sites by metal sulfates and ammonium sulfates [22]. This
second effect is regarded as the main reason for the
decrease in SCR activity. The TOF of SO2 oxidation (SO2

molecules converted per surface redox site per second) of
TiO2-supported catalysts were all within an order of
magnitude (V2O5/TiO2> Fe2O3/TiO2> Re2O7/TiO2~
CrO3/TiO2~Nb2O5/TiO2>MoO3/TiO2~WO3/TiO2). The
mechanism of SO2 oxidation is not sensitive to the
synergy of the surface metal oxide species [33]. The
content of V2O5 is usually kept low (less than 2 wt. %)
because it is active not only in the SCR reaction but also in
the oxidation of SO2 [34].
Sulfate species, which can be produced from SO2

oxidation, played dual roles with respect to catalytic
activity, which depends on temperature. At temperatures
greater than 300°C, catalytic activity is generally enhanced
because of the enhanced intensity of Brønsted acid sites by
the adsorbed sulfate species. At temperatures less than
200°C, the formation of metal sulfates leads to a disruption
of the redox properties between active sites [35]. The
accumulation of sulfate species on the catalyst surface will
lead to the irreversible destruction of the surface catalytic
centers involved in the oxidation of NO to NO2 [36]. The
catalytic activity decreased rapidly in the presence of SO2.
In the temperature range of 200°C–300°C, both roles of
sulfate exist, and the effect of sulfation depends on the
catalyst morphology and the mechanism of SCR reaction.
Numerous components, such as Cu and Fe, were found

to be effective to improve the SO2 resistance of SCR
catalysts compared to that of the Mn-based catalyst [37–
39]. The addition of an additive, such as by the doping of
SnO2 [26,40], is another way to possibly solve this
problem, and this approach resulted in an enhanced
activity at low temperature and increased N2 selectivity.

2.2.2 Effect of alkali and alkaline-earth metals

Alkali or alkaline-earth metal oxides and/or salts (alkali)
that originate from the flow gas of bio-fuel plants [41,42],
municipal solid-waste incineration plants [43], diesel-fuel
engines [44,45], and coal-fired plants are a serious threat

Fig. 2 Mechanism of NH3-SCR of NO over Mn-Fe catalysts [32]

304 Front. Environ. Sci. Eng. 2013, 7(3): 302–325



and a major concern to the industrial utilization of SCR
catalysts. The deposition of these species can significantly
reduce the SCR performance and limit the catalyst’s
lifetime.
The effect of alkali metals on traditional V2O5-WO3/

TiO2 catalysts has been widely studied, and the deactiva-
tion is attributed to the decreased acidity of the catalysts
[46]. Kamata et al. [47] have studied the effect of K2O on
the traditional catalyst and proposed that the potassium
oxide partially reacted with V2O5 to form KVO3.
Khodayari et al. [41,48] reported that potassium retarded
the redox potential of the surface vanadia species and
decreased the amount of NH3 adsorbed: the amount of
NH3 (ad) bound to the Brønsted-acid sites decreased with
increasing potassium content of the catalyst, whereas the
amount of NH3 (ad) adsorbed onto the Lewis-acid sites
was nearly unchanged. Lisi et al. [43] proposed that K and
Na did not cause a loss of surface area but rather caused a
significant decrease in the surface acidity. Zheng et al. [42]
studied the deactivation effect of potassium in the form of
both chloride and sulfate on the SCR catalysts and found
that potassium titrated the active sites for NH3 adsorption
and that simply increasing the reaction temperature or the
vanadium content cannot effectively compensate the loss
of activity. Catalysts with high vanadium content become
active for the oxidation of NH3, which causes a net NO
formation. Kröcher and coworkers [44] reported that the
poisoning elements potassium and calcium occupied the
non-atomic hole sites of the (010) V2O5 surface such that
both Brønsted acid and V5+-O sites were blocked.
Klimczak et al. [45] proposed that, in addition to the
deactivation by potassium, sodium, manganese and
calcium, phosphate is also a strong deactivating compo-
nent. Though doping of phosphorus on the catalyst surface
could increase the acidity of the catalyst, the formation of
phosphate results in a decreased catalytic surface due to
pore blocking. All these studies have primarily focused on
the effects of the surface acidity with decreasing SCR
activity, and few reports have been devoted to the effects
on other properties. Tang et al. [49] reported that the redox
property (reducibility) could be another key factor for the
poisoning effect of alkali metals over V2O5/TiO2 based on
the doping of sodium and calcium ions. Chen et al. [50]
proposed that surface-chemisorbed oxygen could also be
reduced and that the downward trend was in good
agreement with the SCR activity. With respect to
theoretical calculations, Calatayud et al. [51] investigated
the stability and reactivity of the V2O5 (110) and (001)
surfaces using the density functional theory (DFT) method.
Moreover, they studied the effect of alkali doping on the
V2O5/TiO2 catalyst model and concluded that the dopant
atoms significantly affect the V = O groups. Recently, Peng
and Li et al. employed a combination of experimental and
theoretical methods to elucidate the mechanism of the
alkali metal deactivation of the CeW catalyst in SCR
reactions [52]. They found that the decreases in the

reducibility and the quantity of Brønsted acid sites were
responsible for the catalyst deactivation and that the acid
strength was not significantly influenced by the alkali
metal. DFT calculations revealed that Na and K could
easily adsorb onto the CeW (110) surface and that the
surface oxygen could migrate to cover the active tungsten.
More importantly, the CeW catalyst exhibited better
resistance to alkali metal poisoning compared with that
of the traditional V2O5/TiO2 catalyst, and hot-water
washing was found to be a convenient and effective
method to regenerate alkali metal poisoned CeW catalysts.

2.3 Elemental mercury oxidization by catalysis

Mercury is an important air pollutant because of its toxic
effects on the environment and human health, its
persistence in the environment, and its global transport in
air masses. Coal-fired utility boilers are currently the
largest single known source of anthropogenic mercury
emissions. The emission of mercury from coal-fired plants
is a serious concern in both developed and developing
countries [53]. Elemental mercury is the major species
emitted in the flue gas from coal-fired utilities [54]. Thus
far, the most promising and cost-effective technology for
the control of elemental mercury emissions is the co-
benefit of the SCR unit [55]. Gaseous elemental mercury
can be catalytically oxidized to gaseous HgCl2 via a SCR
catalyst using HCl in the flue gas as the oxidant. The
formed HgCl2 can then be efficiently captured by wet flue-
gas desulfurization (FGD) systems [56].
Laboratory, pilot and field tests verify that a commercial

SCR catalyst (V2O5-WO3/TiO2) can oxidize elemental
mercury to HgCl2 in the presence of HCl [57,58].
However, without HCl, the ability of a commercial SCR
catalyst for the transformation of elemental mercury is very
poor. Ammonia, which is necessary for NOx control, is a
severe interferent for elemental mercury oxidization [59].
Alkali and alkaline-earth metals (Na, K, Mg and Ca) show
an obvious deactivation for the oxidation of gaseous
elemental mercury on a V2O5-WO3/TiO2 catalyst [60].
Furthermore, some other SCR catalysts, such as V2O5/
TiO2 [57], CeO2/TiO2 [35,61], Fe-Ti spinel [62], Fe-Ti-V
spinel [63] and CeO2-WO3/TiO2 [64,65], have shown
excellent ability to oxidize elemental mercury. Recently,
the commercial SCR catalyst has been modified by RuO2

to suppress the interference of NH3. Although a RuO2-
modified commercial SCR catalyst shows better efficiency
for elemental mercury oxidization and excellent anti-
deactivation ability for NH3, its SCR activity obviously
decreases at high temperatures because of the over-
oxidization of NH3.
Low-temperature SCR catalysts are extremely restricted

in their application due to the deposition of ammonium
bisulfate [66]. The installation of the SCR catalyst
downstream from the particulate control device specifi-
cally for the purpose of elemental mercury oxidation may
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be an economical choice because better mercury conver-
sion can be achieved [55]. Therefore, numerous low-
temperature SCR catalysts, such as MnOx/TiO2 [67], Mn-
Fe spinel [62], Fe-Ti-Mn spinel [32] and MnOx/Al2O3

[68], have been investigated for elemental mercury
oxidization. The chemical adsorption of elemental mercury
and elemental mercury oxidization is difficult to discrimi-
nate on low-temperature SCR catalysts.
The L–H mechanism, the E–R mechanism, and the

Mars–Maessen mechanism have been employed to
describe the reaction mechanism of the heterogeneous
oxidization of elemental mercury on SCR catalysts (shown
in Fig. 2). Elemental mercury first adsorbs onto the SCR
catalyst, and the adsorbed elemental mercury subsequently
reacts with gaseous HCl to form gaseous HgCl2, which is
the E–R mechanism [69]. In the L–H mechanism, both
gaseous elemental mercury and HCl adsorb onto the SCR
catalyst, and then the adsorbed elemental mercury reacts
with adsorbed HCl to form HgCl2 [70]. On some SCR
catalysts, gaseous elemental mercury may compete with
gaseous HCl for the adsorption sites. In the Mars–Maessen
mechanism, elemental mercury first adsorbs onto the SCR
catalyst, and the adsorbed elemental mercury is then
oxidized by the lattice oxygen on the SCR catalyst to form
HgO/Hg2O, and the HgO/Hg2O can react with gaseous
HCl or adsorbed HCl to form HgCl2 [71].
To date, none of these mechanisms has been verified as

the dominant mechanism for catalytic mercury oxidation.
If the SCR catalyst undergoes changes or if the reaction
temperature varies, the mechanism for elemental mercury
oxidization may be different. Furthermore, these mechan-
isms have been used to interpret the interference of SO2

and NH3 with elemental mercury oxidization over the SCR
catalyst. Gaseous NH3 may compete with elemental
mercury for the adsorption sites, which would result in
an obvious interference with elemental mercury oxidiza-
tion [56]. SO2 can react with the SCR catalyst and result in
the sulfation of the SCR catalyst. The adsorption of
elemental mercury and/or HCl onto the SCR catalyst may
be restrained due to the sulfation. Furthermore, gaseous
SO2 may compete with elemental mercury and/or HCl for
the adsorption sites [72]. As a result, SO2 generally shows
a remarkable interference with elemental mercury oxidiza-
tion.

3 Removal of NOx from automobile exhaust
by catalysis

Among the new emerging SCR systems for automotive
NOx control, many efforts have been focused on metal-
promoted zeolites. Many ion-exchange zeolites have been
reported to be active in the NH3-SCR reaction. Among this
wide family of catalysts, iron and copper zeolites appear to
be particularly interesting and have been extensively
studied.

3.1 NH3-SCR on zeolite catalysts

Metal-exchanged zeolites have been proven to be active
SCR catalysts with broad operation-temperature windows
[73]. Among these catalysts, Cu- and Fe-based zeolites are
the most attractive catalysts for NH3-SCR and have been
extensively studied [73,74]. Cu-ZSM-5 and Cu-BETA are
known to exhibit excellent low-temperature activity in this
reaction. Isolated Cu2+ and Cu-O-Cu dimeric species are
generally recognized to play key roles in the NH3-SCR
reaction, and the redox cycle between Cu2+ and Cu+ is
important [75,76]. However, Cu-ZSM-5 and Cu-BETA
demonstrate a lack of hydrothermal stability at temperatures
greater than 700°C. The change of oxidation state of copper
during aging (the decrease of the Cu+ species and/or
agglomeration of Cu species) and the destruction of zeolite
structure have been suggested to be the main reasons for
hydrothermal deactivation. Fe-exchanged zeolites, espe-
cially Fe-ZSM-5, have been proven to be active catalysts
for the NH3-SCR of NOx [73,77]. The NH3-SCR activity of
Fe-ZSM-5 can be affected by numerous parameters,
including the Si/Al ratio of the zeolite, the degree of ion
exchange and the preparation method [77–80]. The Fe
species on Fe-ZSM-5 are generally distinguished as
isolated Fe3+, oligomeric FexOy clusters and Fe2O3 particles
[77–80]. The contribution of different Fe species on Fe-
ZSM-5 to SCR activity has been suggested to strongly
depend on reaction temperature; however, isolated Fe3+

species should be the active sites for low-temperature SCR
reactions. The limited hydrothermal stability of Fe-ZSM-5
catalysts is also one of the challenges for practical
applications [81,82]. Hydrothermal aging is known to
lead to the dealumination of zeolite frameworks, the
migration of Fe ions to form FexOy clusters and a decrease
of Brønsted acidity.
Recently, Cu-chabazite SCR catalysts (Cu-CHA),

including Cu-SSZ-13 and Cu-SAPO-34 with high deNOx

efficiency, have been reported [83,84]. The CHA zeolite
contains small-sized pores, which can coordinate isolated
mononuclear Cu2+ species, and the CHA zeolite has shown
excellent low-temperature NH3-SCR activity and high
resistance to hydrothermal aging and hydrocarbon poison-
ing. Further research has demonstrated that Cu-CHA
catalysts can withstand severe hydrothermal aging condi-
tions at 800°C for 16 h, which compares well with a
vehicle-aged catalyst used for a 135,000 miles [85].
Attractively, the Cu-SSZ-13 catalyst still exhibited excel-
lent N2 selectivity with little N2O produced, even though a
significant amount of NO2 existed in the feed gas [86]. All
of these advantages indicate that the Cu-CHA is a
promising catalyst for the DeNOx process from diesel
exhaust. More recently, a one-pot synthesis method with a
significantly lower cost was designed for the preparation of
Cu-SSZ-13 catalyst, which would be beneficial to the
industrial application of Cu-SSZ-13 catalyst [87].
With respect to Fe-zeolite catalysts, research results have
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shown that low iron loadings and low calcination
temperatures resulted in mostly iron monomers, especially
for the ion-exchanged samples [80,89]. In contrast, a
mixture of monomers, oligomers and hematite particles
was formed at intermediate to high loadings. Heating in
this gas mixture gave a distinct correlation between the
catalytic performance and the oxidation state of iron,
which is more pronounced in the catalysts where mostly
iron monomers are present. The Fe/HBEA catalysts have
been recently developed for the NH3-SCR reaction. Its
possible mechanism in the so-called standard SCR reaction
was elucidated by Klukowski, which is shown in Fig. 3
[90]. Their results suggested a dual-site mechanism, which
implies that the NO and NH3 adsorb and react on
neighboring Fe3+ sites and that NH3 undergoes several
adsorption/desorption cycles on the substrate before
adsorbing and reacting on the Fe3+ sites. The uptake of
NH3 results in the partial reduction of Fe

3+ sites, which are
finally recycled by O2. However, some contribution from a
single-site mechanism cannot be completely ruled out.
SCR reaction mechanisms over zeolites at low tempera-
tures have been summarized elsewhere [13].

3.2 HC-SCR technique

Among the NOx reduction technologies developed for the
control of diesel engine emissions, the selective catalytic
reduction by hydrocarbon (HC-SCR) approach has
attracted attention as a possible alternative to the NH3

urea-SCR reaction [91,92]. The distinct advantage of HC-
SCR is that the on-board fuel can be used as a reductant for
NOx conversion, which reduces the cost involved in the
development of infrastructure for delivering reductant to an
automotive engine exhaust system. Numerous catalysts,
such as zeolite oxides, basic oxide/metal and noble-metal
catalysts have been found to be effective for the HC-SCR
of NOx by CH4, C2H2, C2H5OH in the presence of excess
oxygen [92–97]. Among them, Ag/Al2O3 is known as one
of the most effective catalysts for HC-SCR [98–100].
When using oxygenated hydrocarbons as reductants,
particularly ethanol, Ag/Al2O3 shows high activity even
in the presence of SO2 and H2O [101].
To improve the overall performance of Ag/Al2O3 for

NOx reduction, numerous researchers have focused on the
relationship between the structural features of Ag/Al2O3

catalysts and their catalytic activity for the SCR of NOx.
NOx reduction is widely accepted as being strongly
correlated to the silver loading. Structural characterization,

particularly by ultraviolet–visible spectroscopy (UV–vis),
X-ray adsorption spectroscopy (XAS), and X-ray photo-
electron spectroscopy (XPS) measurements, identified that
oxidized silver was predominant on Ag/Al2O3 catalysts
with moderate silver loadings, whereas metallic silver
clusters (Agn

0) became dominant on high-silver-content
alumina catalysts [100,102–107]. In general, oxidized
silver present as isolated Ag+ cations and/or oxidized silver
clusters (Agn

δ+ ) on the Al2O3 surface are responsible for
the HC-SCR reaction, whereas metallic silver clusters are
responsible for the direct combustion of hydrocarbons.
The structure of hydrocarbons is widely accepted as

strongly influencing the activity of Ag/Al2O3 for NOx

reduction [91,92]. The oxygenated hydrocarbons, such as
ethanol, acetaldehyde, and propyl alcohol, exhibit excel-
lent NOx reduction activity on Ag/Al2O3. Thus, elucidation
of the intrinsic property responsible for the NOx reduction
by oxygenated hydrocarbons may provide a guideline for
the development of a HC-SCR system with high efficiency
for NOx reduction. During the partial oxidation of ethanol
and the reduction of NOx with ethanol over Ag/Al2O3,
large amounts of surface enolic species were observed by
He and coworkers [92,108,109]. The surface enolic species
exhibited much higher activity than did acetate in reactions
with nitrate and/or NO+ O2 to form-NCO species, which
demonstrates its crucial role in the SCR of NOx by ethanol.
Further studies have determined that enolic species also
play a key role in the reduction of NOx by other alcohols
(1-propanol, isopropyl alcohol, 1-butanol, sec-butyl alco-
hol, and isobutyl alcohol) over Ag/Al2O3 [110–113],
acetaldehyde over both Ag/Al2O3 [108] and Co/Al2O3

[114], and acetylene over ZSM-5 [115]. Interestingly, enols
have been demonstrated to be the common intermediates in
hydrocarbon oxidation [116]. More recently, Yan et al.
[117] found that the enolic species that originate from the
partial oxidation of ethanol over Ag/Al2O3 prefer to adsorb
onto or close to silver sites, in intimate contact with the
active phase. This adsorption behavior of this enolic
species contributes to its high activity for the formation of
isocyanate species (-NCO) and the final product, N2,
during the NOx reduction by ethanol over Ag/Al2O3. These
results strongly suggest that adsorbed enolic species and/or
enols in the gas phase are the important intermediates
involved in the HC-SCR of NOx.

3.3 NSR technique

For decades, researchers have been committed to the

Fig. 3 Scheme of the proposed mechanism of the standard SCR reaction on Fe/HBEA zeolite [90]
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development of new technologies to eliminate NOx

emissions from lean-burn exhaust. One of the promising
solutions is the use of NOx storage reduction (NSR, also
known as lean NOx trap (LNT) catalysts) [118]. The NSR
catalyst, which was first developed by the Toyota
Company, usually contains noble metals (Pt, Pd or Rh),
alkali or alkaline-earth metals (e.g., Ba), and a high-
surface-area support. This catalyst is supposed to reduce
NOx emissions under a cyclic lean/rich mode for diesel or
lean-burn gasoline engines. In the operation of a typical
lean engine, NO is oxidized to NO2 over noble metals and
is then stored as nitrites and/or nitrates on the storage
components of the catalysts [119,120]. After the engine is
periodically switched to fuel-rich conditions, the absorbed
NOx is released and reduced to N2 by hydrogen, carbon
monoxide, and hydrocarbons.
Most previous studies have focused on catalyst

compositions that strongly affect the storage and reduction
of NOx [121]. Commonly, Al2O3 has been used as the
support for NSR catalysts because of its high surface area.
Recent studies have reported that CeO2 exhibits certain
advantages, particularly in relation to its good oxygen
storage capacity and its ability to maintain a high
dispersion of noble metals and improve the water–gas
shift reaction [122]. With respect to Ba-containing
catalysts, the noble-metal species and their dispersion
have been reported to lead to different NO oxidation
activity in the lean phase [119], which directly influences
subsequent adsorption onto Ba sites. Furthermore, Ba sites
located in proximity to Pt are generally accepted as playing
an important role during the trapping process. A spill-over
mechanism has been proposed to explain such promising
effects, which indicates that both oxygen and NO/NO2

could easily migrate from Pt sites to nearby Ba sites and
thus improve the adsorption efficiency [123]. Recently, a
Pt/Co/Ba/Al2O3 catalyst was developed by Wang et al.
[124], on which an intimate contact of Co with Ba/Al
provides more active sites for NO adsorption, oxidation
and desorption. As a result, the Pt and Co co-supported
catalysts show better NOx storage and reduction perfor-
mance and higher N2 selectivity compared to the
traditional Pt-supported Ba/Al2O3 catalyst.

4 Removal of VOCs by catalysis

4.1 Catalytic oxidation of VOCs from industry

VOCs are major contributors to air pollution because of
their toxicity to human health and their involvement in the
formation of photochemical smog. VOCs pollution derives
mainly from emissions of industrial processes and
automobile exhausts [125]. With increasingly stringent
environmental regulation, the development of effective
methods to control VOCs emissions is urgently needed.
Numerous different methods are available to control VOCs

emissions, and each method has practical limitations for
different organic compounds, concentrations, and emission
sources [126]. One of the most effective and economically
feasible VOCs removal technologies is the catalytic
oxidation method [127] because catalytic oxidation can
operate with dilute VOCs effluent streams (< 1% VOCs)
and at much lower temperatures than conventional thermal
incineration; the catalytic oxidation method therefore does
not produce undesirable by-products, such as dioxins and
NOx. In addition, catalytic oxidation targets the destruction
of pollutant compounds rather than transferring the
pollutant to another phase, which is the case for
condensation and adsorption technologies and is a draw-
back unless the recycling of VOCs present in high
concentrations is a consideration.
The development of noble-metal catalysts and

transition-metal oxides for the catalytic oxidation of VOCs
has been widely explored for both halogenated and non-
halogenated compounds [128,129]. The noble-metal-based
catalysts, despite their higher costs, are preferred because
of their high specific activity, their resistance to deactiva-
tion and their ability to be regenerated [130]. The catalytic
performance of supported noble metals strongly depends
on the preparation method, the type of precursor, he metal
loading and particle size, and the nature of the support
[131,132]. Moreover, the operating conditions used, such
as concentrations of VOCs and oxygen, the overall gas
flow rate, and the type of reactor (fixed-bed catalytic
reactor or flow-through membrane reactor) also strongly
influence the catalytic performance [133,134]. Pt- and Pd-
based catalysts exhibit low light-off temperatures in the
oxidation of hydrocarbons and other organic chemicals
[130,135] and therefore are used extensively as active
components in industrial catalytic formulations for the
conversion of VOCs emitted from stationary and vehicle
sources [136,137]. The activity of Pd is generally better
than that of Pt in the conversion of methane; however, its
activity is lower in the transformation of other organic
compounds [138]. The resistance of Pd to thermal and
hydrothermal sintering is also better than that of Pt;
however, its behavior in the presence of poisons, such as
sulfur-containing pollutants, is worse [130]. The catalytic
activity of Pd-based catalysts is closely related to the state
of the Pd species, their particle size, and their morphology
[139]; therefore, the catalytic behaviors of Pd catalysts
have been widely investigated. Pd species on catalyst
surfaces are widely accepted as being divisible into three
groups: the metallic (Pd0) state, the oxidized state (PdO)
and a mixture of both states (Pd0/PdO), depending on the
catalytic process [140]. Disagreement still remains as to
which Pd state is active for the catalytic oxidation of
VOCs; related factors include the structures of the VOCs,
the reaction temperature and the nature of the catalyst
carrier [141,142].
The industrial application of Pt- and Pd-based catalysts

for VOCs control is still limited by cost and sensitivity to
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poisoning by chlorine/chloride products during the oxida-
tion of chlorinated VOCs [127,143]. Thus, non-noble-
metal oxide catalysts have been developed as low-cost
alternatives to the Pt- and Pd-based catalysts. Substantial
effort has been made to improve the oxidation activity and
resistance to poisoning of metal oxide catalysts, including
CoCrOx [144,145], MnCoOx [146], InSnOx [147],
MnCeOx [148–150], MnCuOx [151], NiCoOx mixed
oxides [152], Ce-doped ZrO2 [153], Mn-doped ZrO2

[154] and MnOx/TiO2-CNTs [155]. In recent years, the
influence of the structure of metal oxide catalysts on
activity has been reported, and catalysts prepared with
ordered meso-structures exhibited better activity than bulk
catalysts with non-meso-structures [156,157]. Different
preparation methods for mixed-metal oxides have also
been investigated in the oxidation of VOCs, and these
studies have reported the influence of the preparation
methods on the activity [149,150,158].
Although several effective metal oxide catalysts have

been developed for the combustion of VOCs, some
challenges still remain. For example, ordered meso-porous
chromium trioxide is very active for toluene oxidation
[159], but the high toxicity of chromium causes serious
catalyst disposal problems. The supported vanadia cata-
lysts show excellent activity and stability for the
simultaneous removal of VOCs and NOx in the Cl2–HCl
environment [160]; however, the corrosive properties of
vanadia catalysts inhibit their widespread application,
particularly for wet flue gas streams. Therefore, further
research is needed to develop novel environmentally
friendly and highly effective metal oxide catalysts to not
only improve removal efficiencies but also reduce costs for
the treatment of a wide variety of VOCs from industrial
sources. In addition, more fundamental research to under-
stand the catalytic mechanisms involved in oxidation
reactions is also crucial to the objective of developing
appropriate industrial materials for the removal of VOCs.

4.2 Catalytic purification indoor air pollutants

An individual on average spends more than 90% of the day
inside buildings and vehicles; therefore, indoor air quality
has great effects on human health [125,161]. With the
increasing public health concerns about hazardous indoor
pollutants, how to eliminate indoor air pollutants such as
formaldehyde (HCHO), BTX or microbes etc., has been
recently received great attention from the scientific
community [162]. Physical adsorption, photocatalysis
and thermal catalysis are the most common methods for
indoor air purification and therefore have been extensively
studied.

4.2.1 Photocatalysis

Photocatalysis presents an alternative to physical adsorp-

tion methods in indoor air pollution abatement [162]. The
common photocatalysts are primarily metal oxides or
sulphides, i.e., TiO2, ZnO, ZrO2, SnO2, WO3, CeO2,
Fe2O3, Al2O3, ZnS and CdS [163]. Because of its superior
photocatalytic activity, chemical stability, low cost and
nontoxicity, TiO2 has been extensively studied as a
photocatalyst [164–166]. Under UV illumination, an
electron is excited from the valence band to the conduction
band of TiO2, generating a positive hole in the valence
band. Positive holes can oxidize OH- or water on the
surface of TiO2 to produce hydroxyl radicals, and then the
hydroxyl radicals can subsequently oxidize gaseous
pollutants [163]. The organic and inorganic pollutants in
the indoor air such as formaldehyde, acetaldehyde,
benzene, toluene, acetone, ammonia and NOx can all be
photo-oxidized into CO2, H2O and mineral acids on TiO2

or other photocatalysts [162,167–170]. Bacteria in the
indoor air can also be removed by photocatalytic
decomposition [171], which is also important for indoor
air purification [172]. Because TiO2 is only active upon
UV excitation, there has been much effort to develop
second-generation TiO2 photocatalysts that can be oper-
ated not only under UV but also visible light irradiation
[173,174]. Various techniques have been employed to
enable it to operate under visible light irradiation. These
techniques include surface modification via organic
materials and semiconductor coupling, band gap modifica-
tion by creating oxygen vacancies, and by doping with
nonmetals or co-doping with nonmetals and metals [175].
VOCs and bacteria can be photodegraded under visible
light irradiation on Fe-TiO2 [176], N-TiO2 [177], C-TiO2

[178,179], CuxO/TiO2 [180], TiO2 hybridized with
graphite-like carbon [181] and so on. Air-cleaning devices
based on photocatalysts require an additional light source.
Besides use in air-cleaning devices, indoor wall paint with
second-generation TiO2 photocatalysts have been used for
air cleaning under indoor daylight or artificial light [182].
However, the activity of photocatalytic wall paints is

currently still not satisfactory, and the development of new
materials with suitable activity seems to be a challenging
task. Although VOCs and bacteria can be degraded by
photocatalysts, the removal rate is influenced by numerous
parameters: light intensity, pollutant concentration, humid-
ity and so on. Additionally, the generation of relatively
stable reaction intermediates (such as the formation of
benzaldehyde, benzoic acid and benzyl alcohol during the
photocatalytic oxidation of toluene) may lower the
removal rate and even stop the reaction through blocking
active sites [183].

4.2.2 Thermal catalysis method

Thermal catalysis has been recently studied for use in
indoor air purification; however, its application is presently
limited to microbe sterilization and HCHO oxidation
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because the complete decomposition of other indoor air
pollutants by catalytic oxidation requires a much higher
reaction temperature than room temperature.
Photocatalytic disinfection requires use of photon

energy and a relatively complex device. Therefore,
development of environmentally friendly and economic
catalytic disinfection methods is needed. For this purpose,
many researchers have drawn attention to the study of
antibacterial materials working at room temperature
[184,185]. Among the various bactericidal metals such as
Cu, Zn, Ag and metal oxides such as AgO, CuO, ZnO,
MgO, CaO, Ag-loaded catalysts are known to have a wide
bactericidal spectrum and relatively high safety [185].
Previous studies by He’s group explored the efficiency of
silver-loaded bactericidal catalysts including Ag/Al2O3,
AgCl/Al2O3, and Ag-Ce/AlPO4 in the inactivation of
SARS coronavirus, Escherichia coli, and yeast [186–188].
These microorganisms could be completely inactivated
within 30 min on the Ag/Al2O3 surface at room
temperature. The addition of Ce efficiently enhanced the
dispersion of Ag loaded on the catalyst surface, and
inhibited the elution of Ag+.
Up to now, the bactericidal mechanism of non-photo-

catalysis technology was controversial. The majority of
studies suggest that microorganisms in contact with a
catalyst could first cause disruption to bacterial membranes
and then apoptosis and decomposition. The core mechan-
ism is the reaction with reactive oxygen species (ROS)
generated by the activation of oxygen molecules on the
catalyst surface [187–189]. Interfacial forces and electro-
static interactions are probably also important factors in
this respect. In addition, the toxicity of free metal ions
originating from the catalyst materials cannot be ignored.
For Ag/Al2O3, AgCl/Al2O3, and Ag-Ce/AlPO4 catalysts,
the catalytically bactericidal effect should be considered as
a synergic action of ROS and Ag+ [186–189]. In short,
catalytic sterilization is a potential technology for air
disinfection and purification.
The catalytic oxidation of HCHO has also been

investigated over many kinds of materials such as the
supported noble metal-based catalysts (Pt, Pd, Rh, Au, Ag)
[190–192] or transition metal oxide catalysts (Mn,Sn)
[193–195]. OMS-2 shows good activity even in the
presence or H2O; however, noble metal catalysts show
much higher activity than metal oxide catalysts. The
oxidation of HCHO under ambient conditions has been
mainly achieved on Pt-, Pd- and Au-supported catalysts.
Among them, Pt-based catalysts were found to be the most
effective catalysts for HCHO oxidation at ambient
temperature [196]. Zhang et al. first reported in 2005 that
a Pt/TiO2 catalyst could effectively catalyze the HCHO
oxidation into H2O and CO2 at room temperature [192].
Since then, catalysts with Pt supported on MnOx-CeO2

[193], Fe2O3 [197], Al2O3 and MgO [198] were also
investigated and all Pt-based catalysts exhibited high
efficiency for ambient HCHO oxidation, revealing that the

support has little effect on the catalytic activities. The high
activity of the Pt/TiO2 catalyst has been mainly attributed
to the high dispersion of Pt on the support surface and the
promotion of oxygen mobility [199]. More recently,
it was reported the addition of alkali-metal could
significantly improve the activity of Pt/TiO2 for the
ambient HCHO destruction because Na doping further
promoted Pt dispersion and induced an atomically
dispersed Pt-O(OH)x-alkali species [192].
The formaldehyde oxidation pathway and intermediates

over Pt-base catalysts was also proposed based on the
results of in situ DRIFTS experiments. Zhang et al. found
that surface dioxymethylene (DOM), formate and CO
species are the main reaction intermediates during the
HCHO oxidation over Pt/TiO2 catalysts [196,199]. DOM
could be quickly oxidized to formate on the catalyst
surface and therefore was hardly observed in spectra. The
formate species next decomposed into adsorbed CO
species and then was oxidized to CO2 through reaction
with surface oxygen. The decomposition of the formate
species into adsorbed CO is the rate determining step
[196,199]. Subsequent studies also claimed a similar
reaction mechanism for HCHO oxidation over Pt/TiO2

catalysts at room temperature [200]. Zhang et al. also
studied the reaction mechanism of HCHO oxidation over
Na-promoted Pt/TiO2 catalysts using in situ DRIFTS
[192]. They observed that Na addition opened a new low-
temperature reaction pathway by greatly promoting the
activation of surface OH groups and then catalyzing a
facile reaction between surface OH and formate species to
total oxidation products, rather than the decomposition of
formate to CO followed by CO oxidation [192].

5 Water purification by catalysis

Recent treatment methodologies involving catalysis have
the potential to treat all types of organic and inorganic
contaminants, which include oxidative and reductive
processes. The oxidative processes, which are all oxygen
based, are usually termed Advanced Oxidation Processes
(AOPs). Due to sufficient hydroxyl radicals in the processes,
most of organic contaminants are converted into carbon
dioxide, short-chain organic acids, and inorganic ions,
typically less toxic and amenable to biodegradation. The
reductive processes are carried out by the catalytic reduction
of metal for the detoxification of halogenated compound and
inorganic pollutants in water. In this present, the catalytic
materials and catalytic degradation process of contaminants
will be summarized for water.

5.1 Catalytic oxidation process in water purification

5.1.1 Heterogeneous Fenton catalysis in water purification

Although the homogeneous Fenton reaction is highly
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efficient and low cost for wastewater treatment by
detoxification [201], destruction of organic pollutants
(dyes, aromatic compounds) [202], and biodegradability
improvement [203], it suffers from the drawback of a
narrow pH range (pH< 3) and Fe sludge disposal and/or
regeneration [204]. The main advantage of developing a
heterogeneous Fenton catalyst is the fact that it can help to
circumvent the problem of iron oxide sludge formation,
and as a result it extends the effective pH range [205].
Moreover, its recoverability and reusability [206] further
ascertain the benefits of application.
Iron oxides/metal doped iron oxides. Iron oxides, such

as magnetite, hematite, goethite and ferrihydrite were used
directly as heterogeneous Fenton catalysts for the oxida-
tion of azo dye, quinoline, and monoterpene [207,208].
Different catalytic mechanism of pollutants degradation
was also proposed. For example, as shown in Fig. 4, the
reaction may experience an iron cycling on the surface of
goethite and �OH radical was involved in the pollutants
degradation process.

Modifications of the iron oxides’ structure by doping
with other transition-metal cation or by thermal treatment
(controlled reduction with H2) have also been studied in
attempt to improve the catalytic performance of those
materials [210–212]. It has been proven that the introduc-
tion of Mn and Co into Fe3O4 resulted in a remarkable
increase in the Fenton activity for the oxidation of organic
molecules [211,213]. The degradation process takes place
via radical species, which can be generated by Fe2+, Co2+

and Mn2+. The high activity could be attributed to
thermodynamically favorable reduction of Co3+ and
Mn3+ by Fe2+ by an electron transfer within the
semiconductor oxide. The regeneration of Co2+ and
Mn2+ by this process would be responsible for the
remarkable increase on the activity of H2O2 decomposition
and organic oxidation. Similarly, Cu-doped α-FeOOH,
Bi2O3 and LaTiO3 perovskite prepared by Hu et al.
[214,215] are all followed the same catalytic mechanism.
These catalysts exhibited high efficiency for the abatement
of dye pollutant and endocrine disruptors.
Metal ion incorporated in different supports. Supported

transition-metal ions (Cu2+, Fe3+) are another type
promising Fenton catalysts, and the supports can be
organic and inorganic materials, such as zeolite, clay,
activated carbon, alginate gel beads, Nafion membrane,
cationic exchange resin, collagen fiber etc. Metal ions
could be anchored onto the surface of support by ion
exchange and participated in the Fenton catalytic cycle.
For example, Zhao [204] and Hu [216] reported Fe(III)-
loaded resin could eliminate dye pollutants and salicylic
acid efficiently without leaching out of a significant
amount iron ion.
Figure 5 revealed that Fe2+ species was generated from

the interaction of Fe3+ and excited dye molecule via one-
electron transfer, leading to the formation of �OH radicals.
The resin not only acts as a support for Fe2+ and an
adsorbent toward the pollutants in solution, but also
provides a special microenvironment for active iron
centers, enhancing the catalytic decomposition of H2O2

even at neutral pH values.
Besides that, FeIII exchanged HY [217] was efficient in

the photo-Fenton degradation of phenol at a wide pH
range. The enhanced activity was due to the synergistic
effect of zeolite by adsorption of pollutant facilitating the
rate of degradation. Kiwi et al. [218] have reported the
degradation of Orange II by Fe-immobilized Nafion
membrane in presence of H2O2 under solar simulated
visible light irradiation. The Nafion membrane seemed
effective over many cycles photo degradation at wide pH
range without leaching out of a significant amount iron ion.
Fe2+ species induced by light in the Nafion was suggested
to generate the �OH radicals from H2O2 decomposition,
leading to the dye degradation.
Metal complex, such as metalporphyrin, metalphthalo-

cyanine, metalbipyridine, salen schiff-base and bioactive
hemin could mimic peroxidase and P450 enzymes to
catalytically activate oxidants (H2O2, O2 and KHSO5) for

Fig. 4 Schematic diagram of the Fe(III)-initiated Fenton-like
chain reaction [209]

Fig. 5 Proposed Fenton-like mechanism of Fe(III)-resin under visible light irradiation [204]
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the degradation of toxic organic pollutants. To immobilize
these complexes on different supports such as zeolite, resin
and silica gel by molecular impregnation [214], template
synthesis [219], or flexible ligand route for the Fenton
degradation of organic pollutants has been investigated by
many research groups.
Meunier reported for the first time that iron tetrasul-

fophthalocyanine supported on ion-exchange resin could
efficiently degrade 2,4,6-trichlorophenol in the presence of
H2O2. However, the reaction rate was greatly reduced
when water was used as the sole solvent. Moreover, the
requirement of an organic cosolvent compound would
hinder the application of this treatment method for organic
pollutants. To overcome this disadvantage, Zhao [220] has
developed a new catalytic system consisting of iron
tetrasulfophenylporphyrin (TPPS4) supported on a com-
mercial anionic ion-exchange resin. In comparison with
FeTPPS4, the catalyst exhibited much higher efficiency for
the photo-Fenton degradation sulforhodamine B and 2,4-
dichlorophenol under visible light irradiation.
As show in Fig. 6, upon visible light irradiation,

[HOOFeIII-PR] is converted to [HOOFeIII-PR]* excited-
state transition species, which may undergo intramolecular
electron transfer to generate [FeIIPR] and �OOH inter-
mediates. Moreover, the O-O band cleavage of [HOOFeIII-
PR]* results in generation of [PRFeVb= O] and �OH
radicals. �OH will react immediately with organic
pollutants and degrade them effectively.
Besides, in Hu’s group, ferrocene was anchored on silica

gel by covalent grafting method at ambient conditions. The
catalyst also showed high catalytic activity and stability for
the degradation of Acid Red B in the presence of H2O2

under UVA irradiation [221]. Iron sulfophthalocyanine
modified HMS molecular sieve and β-cyclodextrin-hemin
[222] were further synthesized and highly efficient for the
degradation of malachite green, Rhodamine B and 2,4-
dichlorophenol at neutral pH in the presence of H2O2 and
visible light.
Iron hydroxyl/iron oxide-pillared clay. The Fe pillared

clay may be one of promising heterogeneous catalyst
because of its unique characteristics, abundance and low
cost. The hydroxyl-Fe polycation could intercalate clay
and be fixed as pillars to form hydroxyl-Fe-pillared clay
via cation exchange. Hydroxyl-Fe should be converted to
oxide pillars after calcinations at a high temperature
through dehydration and dehydroxylation process.
It has been reported that the hydrolysis products of iron

ions, such as Fe(OH)2+, Fe(OH)2
+, Fe2(OH)2

4+ have high
photochemistry activity [223,224]. Hydroxyl-Fe pillared
clay may also have high photochemistry activity and could
be used as a new photo-Fenton catalyst. Hydroxyl-Fe
pillared bentonite was successfully developed by Zhu’s
group [225] and exhibited a high catalytic activity and
good long-term stability in multiple runs in the degradation
of Orange II. Its catalytic activity for H2O2 came from
hydroxyl-Fe between sheets rather than Fe3+ or Fe2+ in

tetrahedral or octahedral sheets of bentonite.
The hydroxyl-Fe-pillared clay would be transformed

into α-Fe2O3-pillared clay when it was treated with
calcinations at 350°C for 24 h. Compared with raw clay,
the α-Fe2O3-pillared clay possesses large micropore
volume and specific surface area as well as more special
catalytic activity. For example, Hu [226,227] successfully
prepared α-Fe2O3-pillared bentonite/laponite as a hetero-
geneous UV-Fenton catalyst to remove non-biodegradable
azo-dye Orange II. The results indicated that the catalyst
exhibited a high catalytic activity not only in the photo-
Fenton decolorizaion of Orange II but also in the
mineralization of Orange II.

5.1.2 Heterogeneous catalytic ozonation in water
purification

Heterogeneous catalytic ozonation has received increasing
attention in recent years due to its potentially higher
effectiveness in the degradation and mineralization of
refractory organic pollutants and lower negative effect on
water quality. The major advantage of a heterogeneous
over a homogeneous catalytic system is the ease of
catalytic retrieval from the reaction media. In addition, it
has been developed to overcome the limitations of
ozonation processes, such as the formation of byproducts
and selective reactions of ozone, which are designed to
enhance the production of �OH.
Several metal oxides such as MnO2, Al2O3, TiO2, CeO2,

ZnO and FeOOH were studied as possible catalysts for
ozonation process. The activity of these catalysts was
greatly influenced by temperature and solution pH. MnO2

is the most widely studied metal oxide as an ozonation
catalyst for the removal of atrzine, oxalic acid, pyruvic
acid, N-methyl-p-aminophenol, sulfosalicylic acid and
proionic acid. Its activity is known to increase with a
decrease of solution pH. Moreover, the structure of MnO2,
resulting from the method of synthesis, is a significant
factor determining its activity. For example, the commer-
cial MnO2 is not active while the pre-formed hydrous
MnO2 (hydrous MnIV) is slightly lower than MnO2 formed
in situ [228,229]. Al2O3 showed high efficiency for the
catalytic ozonation of 2-methylisoborneol, 2,4,6-trichlor-
oanisole, chloroethanol, chlorophenol, oxalic acid, acetic
and succinic acid [230]. As shown in Fig. 7, the higher

Fig. 6 Proposed photodegradation mechanisms of organic
pollutants in the aqueous H2O2/FePR system under visible light
irradiation [220]
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density of surface hydroxyls and stronger surface Brønsted
acidity enhanced catalytic activity of Al2O3. So that, Al2O3

exhibited higher efficiency of catalytic ozonation when
compared to ozonation alone.

TiO2 has been widely used as ozonation catalyst for the
degradation of nitrobenzene, 4-chloronitrobenzene, phar-
maceuticals (carbamazepine and naproxen) and clofibric
acid. Its activity was more dependant on the solution pH
and crystal phase structure [201,231]. For example, the O3/
TiO2 system was found to be efficient for oxalic acid
degradation in water at acidic pH and TiO2 is catalytically
active if present in the form of rutile and not anatase.
Zhang et al. reported that among α-FeOOH, β-FeOOH

and γ-FeOOH, α-FeOOH exhibited the highest catalytic
activity for ozonation of nitrobenzene [232]. The
suggested mechanism included ozone decomposition on
hydroxyl groups present on the surface of FeOOH leading
to hydroxyl radicals generation. Ozone molecular decom-
poses with the formation of oxygen and Fe–OH(�O) group.
Fe–OH(�O) subsequently reacts with water leading to the
formation of O2

�- and �OH radical. Both neutral (Me–OH)
and positively charged (Me–OH2

+) surface groups are
responsible for ozone decomposition and �OH radicals
generation. This catalyst also exhibited good performance
for the removal of oxalic acid and p-chlorobenzoic acid.
Co, Mn doped α-Fe2O3 and Fe3O4 were also found to be

effective for the ozonation of 2,4-dichlorophenoxyacetic
acid, 2,4-dichlorophenol and 2,4,6-trichlorophenol (herb-
cides) and phenazone (pharmaceutical) [233,234]. The
multivalent oxidation states greatly enhanced the inter-
facial electron transfer, causing higher catalytic reactivity.
Formation of �OH radicals resulting from the catalytic
decomposition of ozone was found to be the reason for
accelerated removal of organic pollutants from the aqueous
solution.

Metal oxides such as MnO2, TiO2, Fe2O3, CoO
immobilized on supports (silica gel, clay, PAC, Al2O3,
ZrO2 and TiO2) could also be used as heterogeneous
ozonation catalysts for organic compounds removal from
water. Their performance was greatly dependent on their
method of preparation, thermal history, metal oxides
properties and their surface characteristics.
Over 20 ozonation catalysts such as Pt, Pb, Pd, Ag, Co

supported on Al2O3, SiO2 and PAC were examined by Lin
et al. for the removal of formic acid [235], among which,
Pt/Al2O3 and Pd/Al2O3 exhibited the highest activity.
Moreover, solution pH and preparation method signifi-
cantly influence the activity of the catalyst because they
decide about the surface properties. MnOx supported on
mesoporous ZrO2, Al2O3 and CoOx supported on ZrO2

have been synthesized by Hu’s group and showed high
efficiency for the catalytic ozonation of 2,4-dichlorophe-
noxyacetic acid (herbcides) and phenazone, ibuprofen,
diphenhydramine, phenytoin, diclofenac sodium (pharma-
ceutical) [214,236,237]. The results confirmed that the
multivalent oxidation states and high dispersion of MnOx

and CoOx greatly enhanced the interfacial electron transfer,
causing higher catalytic reactivity. The formation of
hydroxyl radical resulted in the enhancement of organic
pollutants’ mineralization.
β-FeOOH supported on mesoporous Al2O3 showed high

efficiency for the mineralization of ibuprofen and cipro-
floxacin aqueous solution with ozone [238]. In comparison
with β-FeOOH and MA, surface Lewis acid sites on β-
FeOOH/MA were more greatly enhanced and the Lewis
acid sites were reactive center for the catalytic ozonation.
The stronger Lewis acid sites of β-FeOOH/MA caused the
more chemisorbed water enhancing the interaction with
ozone, resulting in higher catalytic reactivity.
Cordierite, perovskite, zeolites and ceramic honeycomb

are common used as catalysts in ozonation processes for
the catalytic ozonation of nitrobenzene, benzophenone,
pyruvic acid, gallic acid, phenolic compounds. It was
reported by Zhao et al. ceramic honeycomb was an active
catalyst of nitrobenzene ozonation [239,240] and �OH
radicals were involved in the reaction process. Moreover,
the surface bound hydroxyl groups are responsible for the
formation hydroxyl radicals, therefore, the highest effi-
ciency of this catalyst was observed at pH of solution close
to pHPZC of the catalyst. Furthermore, modification of the
ceramic honeycomb with Mn, Cu and K could significantly
increase the hydroxyl radicals’ generation. The reaction
mechanism was as following: the uncharged surface bound
hydroxyl groups caused ozone decomposition into hydro-
xyl radicals, resulting in the acceleration of nitrobenzene
degradation in bulk solution.
It is well known that activated carbon used together with

ozone could provide better removal of color than when the
two techniques are used separately. Moreover, activated
carbon also showed high efficiency for the removal of
phenolic compounds and nitrobenzene in water. Jans and

Fig. 7 Suggested reaction mechanism during catalytic ozonation
with Al2O3 [230]
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Hoigne [241] reported that the number of active centers on
the surface of activated carbon capable of ozone decom-
position is limited, but ozone decomposition and radicals
formation are three times faster than in the absence of the
catalyst. Hence, ozone decomposition occurs on the
surface of activated carbon and hydroxyl radicals formed
react with organic molecules in the solution.
Besides, perovskite [242], zeolite and volcanic sand

[243] revealed very high catalytic activity in the process of
ozonation of gallic acid. Moreover, the efficiency of ozone
decomposition was greatly enhanced in the present of
ozonation catalyst, leading to greater free radical genera-
tion.

5.1.3 Photocatalytic oxidation in water purification

Heterogeneous photocatalysis has been considered as a
cost-effective alternative for the destruction of persistent
toxic organic compounds [244]. In the process, semicon-
ductor is excited by light energy higher than the band gap,
inducing the formation of energy-rich electron-hole pairs,
and the charge separation is maintained long enough to
react with adsorbed oxygen/H2O and to produce a series of
active oxygen radicals which finally decompose organic
compounds as illustrated in previous work [245,246].
TiO2, ZnO, SrTiO3, CeO2, WO3, Fe2O3, GaN, Bi2S3, CdS
and ZnS have been verified to act as photocatalysts in
redox/charge-transfer processes due to their electronic
structures of a filled valence band and an empty conduction
band. Among of them, TiO2 is the most widely used
photocatalytic material because it fulfills all of the above
requirements as well as exhibiting adequate conversion
values [247]. However, the calculated quantum yield is
appreciably low (below 10%) for most degradation in TiO2

photocatalytic system [248]. As has been known for
several decades, an improvement in TiO2 activity requires
the simultaneous control of both morphology and defect
structure. Modern photocatalysts are usually high surface
area materials, consisting of nanometric particle sizes
below 100 nm and typically around 10 nm. It seems
obvious, that as the surface area/primary particle size
increases/decreases, the number of defective anion and
cation surface centers increases. The high photocatalytic
reaction rates can be obtained by the limitation of primary
particle size at the nanometric range, maximizing specific
photoactivity rates per surface area unit if the whole
morphology (not only the primary particle size) and defect
chemistry of the material are adequately handled. Also, the
improvement of TiO2 optical absorption and photocatalytic
performance can be achieved by cation and/or anion
doping [244,249]. The photoactivity of anatase-TiO2

systems was typically enhanced by the addition of noble
metals such as Pt, Pd, Ir, and Ag at the oxide surface. These
act as electron trapping centers. Also anatase-oxide contact
using WO3, SnO, ZrO2, or other systems aiming at
influencing the electron-hole charge separation process

was attempted [244,250]. Solar photocatalysis is expected
to be the ideal green technology for water purification. A
visible-light-driven photocatalyst has long been antici-
pated and pursued over recent decades. Recent TiO2-based
catalysts still are not without drawbacks as efficient
visible-light-responsive. Therefore, new and/or more
efficient visible-light photocatalysts are being sought
with a view to meeting the requirements of future
environmental and energy technologies driven by solar
energy. A large number of alternative photocatalysts
exhibiting a great variety of compositions and structures,
have been developed [251], having good photocatalytic
behavior for pollutant degradation. The new photocatalysts
predominantly included perovskite (A2+B4+O3),
perovskite-related materials, A3+B5+O4 compounds with
scheelite structures and even iron spinels (AB2O4). In
particular, perovskite-like compounds are stable structures
which form solid solutions with a range of metal ions.
Hence they are considered promising solids for the
chemical substitution of TiO2 with a view to achieving
the appropriate band engineering and consequent band gap
lowering required [252]. Furthermore, new nonoxidic
structures such as nitrides and sulfides have emerged as
promising alternatives for TiO2 photocatalytic oxidation.
Perovskite-structured materials are mainly bismuthate
compounds MBiO3 (M = Li, Na, K, Ag), and the ferrite
family (LaFeO3, SrFeO3, BaFeO3 and BiFeO3) [253–255].
In general, these catalysts are prepared by hydrothermal
synthesis. Different morphologies can be achieved by
controlling the parameters of the hydrothermal synthesis.
The most interesting result, reported by Ruan et al., refers
to the differential photocatalytic behavior observed as a
function of the final morphology. So, while microplatelet
and nanosheets appear to be photoactive under UV
irradiation, nanosheets produce a higher photocatalytic
performance under visible irradiation [256]. For
Perovskite-Related Structures, Bi2WO6 [257] is the
simplest and probably the most studied example within
this family. Beside this, Bi2MoO6 [258], Bi3O4Cl (Eg =
2.79 eV) [259], Na0.5Bi1.5O2Cl (Eg = 3.03 eV) [260] and
PbBiO2Cl (Eg = 2.45 eV) [261], all exhibit visible-light
photoactivity. Also related is the fact that other oxyhalides
have been proposed which have acceptable photoactivities
in the visible range. Oxybromide and oxyiodides such as
BiOBr, PbBiO2Br, BiOIxBr1 – x or BiOIxCl1 – x possess
good visible light responsive abilities [262]. BiVO4 is
scheelite structure, which has been widely reported as
exhibiting good photocatalytic properties. Photocatalysis,
a heterogeneous type advanced oxidation processes, has
been extensively studied for solar energy conversion and
purification of water. The generation of hydroxyl radicals
by UVor visible photocatalysis for water treatment occurs
at the liquid-solid interface, and the subsequent hydroxyl
radical reactions are subject to heterogeneous reaction
dynamics. At present, the primary drawbacks of photo-
catalysis still have been the low quantum yields, which
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may not be as effective for general water purification
processes. However, the growth of heterogeneous photo-
catalysis will continue to be application-driven, supported
by strong process fundamentals. Solar water environmen-
tal remediation, which is the mainstay applications, will
continue to serve as important platforms for showcasing
photocatalytic technologies as well as motivation for
establishing relevant fundamental knowledge.

5.2 Catalytic reductive processes in water purification

Reductive catalysis has emerged as a promising water
treatment strategy, which offers a more selective transfor-
mation of the contaminants to less or nonharmful and more
readily biodegradable substances. It is encouraged to be
applied to the eliminating of halogenated hydrocarbons
[263], nitrate, nitrite perchlorate [264] and N-nitrosamines
(e.g., NDMA) [265], which being an important class of
wastewater-derived micropollutants in water. Several
catalysts have been developed for the reductive catalysis
in water purification. For example, palladium (Pd)-based
catalysis has been extensively studied at the bench-scale,
as supported-Pd and Pd-based bimetallic catalysts can
activate dihydrogen (H2) and catalyze reductive transfor-
mation of a number of priority drinking water contami-
nants (Fig. 8).

Particularly, oxyanions (nitrate, nitrite, bromate, chlo-
rate, perchlorate) [267,268], N-nitrosamines (e.g., N-
nitrosodimethylamine) [269], and a number of halogenated
alkanes (e.g., carbon tetrachloride, 1,2-dichloroethane),
alkenes (e.g., trichloroethene, perchloroethene) [270], and
aromatics (e.g., chlorinated benzenes, polychlorinated
biphenyls) [271]. For example, the nitrogen oxyanions
are catalytically reduced to dinitrogen (N2) and ammonia
(NH3). Beside these, other metals have also been
developed for catalytic contaminant reduction, including

supported Pt, Ir, Rh, Cu, Zn, Ru (alone or with a promoter
metal), and various forms of Ni [272–274]. In general, Pd-
based catalysts are more active, stable, and selective for
desired end products, and/or less toxic. Here, Pd-based
catalysts were focused on published research in the area of
catalytic reduction of priority drinking water contaminant,
summarizing the characteristics and activity of catalysts,
reaction mechanism.
Pd catalysts were doped with other metals to form

bimetallic catalysts, having enhanced activity, which has
been attributed to the changes in geometric and electronic
properties [275]. For example, an alloyed Pd/Au catalyst
produced by coprecipitation showed the enhanced activity
for the oxidation of CO [276]. A bimetallic core-shell
structure, consisting of an Au-core with a Pd-shell
increased the activity of Pd nanoparticles for the hydro-
dechlorination of trichloroethylene by a factor 15 [277].
Moreover, the activity of Au-Pd was increased by a factor
34 [278] by optimization of the particle size (4 nm) and
degree of Pd coverage (highest activity with 12.7 wt% Pd)
of the Au-nanoparticles. Therefore, in the preparation
processes, some metal promoters were added, such as Cu
[279], Sn [280], In [279], or Re [281]. Meanwhile, Pd has
also been added to ZVI in order to eliminate the need for an
external H2 source (i.e., ZVI corrosion forms H2), and
potentially enhance reaction rates [282]. To increase metal
dispersion and facilitate handling and phase separation, Pd
and other catalytic metals are often loaded onto support
materials. Common supports for contaminant reduction are
activated carbon [283], alumina [272,277], and silica
[272]. Other less common but effective supports for nitrate
and nitrite reduction include TiO2 [284], ZrO2 [285], SnO2

[285], organic resins [286], conducting polymers [287],
and carbon nanotubes [288]. An Au support has been
shown to be effective for TCE reduction [289], and zeolites
are an effective support for reduction of chlorinated
aromatics [290].
These supports had indirect effect on activity and

selectivity by affecting the density, size, and morphology
of catalytic metal clusters on their surfaces [291], and the
distribution of reactive sites. Similarly, the preparation
methods influence particle morphology and composition
[292], and structural changes to the catalyst maybe occur
during contaminant reduction [292]. The particle size
determined specific surface area to affect catalytic rates and
mechanisms [293]. Additionally, supports with high
specific surface area or microporosity can have influence
on the activity and selectivity of reactions through mass
transfer effects [294].
In the catalytic reductive processes, metal catalysts are

used to convert hydrogen or other H donor to adsorbed
atomic hydrogen (H ads), a powerful reducing agent that
reacts with oxidized functional groups. The high functional
group selectivity of reductive processes allows for targeted
treatment of contaminants within complex mixtures, which
is an important factor for the preparation of catalysts.

Fig. 8 Schematic showing the transformation of NO –
3 , ClO

–
4 ,

BrO –
3 , and trichloroethylene (TCE) on a Pd-M catalyst particle (M

= Cu, In, Re) [266]
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Proposed reaction pathways for catalytic reduction of
several priority contaminants in water have been reported.
The reactions predominantly followed three categories: 1)
hydrodehalogenation for halogenated organics, 2) hydro-
deoxygenation for oxyanions, and 3) N –N hydrogenolysis
for N-nitrosamines. Many halogenated organics and some
oxyanions can be reduced on Pd alone [295], whereas
NO –

3 and ClO –
4 reduction require secondary “promoter”

metal.
The important practical challenges are to maximize the

activity and selectivity for desired reduction products (N2

in this case), improve the resistance toward catalyst
fouling, and design reactors for full scale applications.

6 Challenges and prospective

Several aspects should be aimed in future research of
environmental catalysis for the abatement of major
pollutants in air and water. 1) Environment-friendly
catalysts have attracted much attention to develop. 2)
Significant efforts should be made for the activity and
durability of catalysts, and dealing with catalyst fouling for
long-term successful treatment. 3) For the selectivity of
pollutants transformation to harmfulness should be more
concerned by adjusting heterogeneous catalytic processes.
4) Further efforts at materials design or reactor design for
pilot- and demonstration-scales. In addition, work is also
needed to couple catalytic processes with other treated
technologies.
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