Available online at www.sciencedirect.com Catalysis Communications 6 (2005) 195-200 www.elsevier.com/locate/catcom # Novel Ag–Pd/Al₂O₃–SiO₂ for lean NO_x reduction by C_3H_6 with high tolerance of SO₂ Jin Wang, Hong He *, Shuxia Xie, Yunbo Yu State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18 Shuangqing Road, Beijing 100085, PR China Received 24 September 2004; accepted 23 December 2004 #### **Abstract** Activity test and in situ DRIFTS experiments were carried out on the selective catalytic reduction of NO_x by propene over Ag (5 wt%)–Pd (0.01 wt%)/Al₂O₃ and Ag (5 wt%)–Pd (0.01 wt%)/Al₂O₃–SiO₂. The activity test results showed that the Ag–Pd/Al₂O₃–SiO₂ had a higher NO_x conversion than Ag–Pd/Al₂O₃ in the presence of SO_2 . The in situ DRIFTS results showed the SO_2 poisoned Ag–Pd (0.01 wt%)/Al₂O₃ surface inhibited the formation of enolic species and NO_3^- , which are reactive intermediates to form –NCO species. However, the SO_2 poisoned Ag–Pd (0.01 wt%)/Al₂O₃–SiO₂ surface can hardly affect the formation of enolic species, NO_3^- and –NCO species. The reaction mechanism of NO_x reduction and the effect of adding SiO_2 are discussed based on these results. © 2005 Elsevier B.V. All rights reserved. Keywords: Selective catalytic reduction; Enolic species; In situ DRIFTS; Sulfate #### 1. Introduction The selective catalytic reduction (SCR) of NO_x by hydrocarbons in the presence of excess O_2 can be applied to the removal of gaseous pollutants from diesel and lean-burn engines. Various types of zeolites [1], metal oxides and noble metals [2] have been found to catalyze the reaction. Ag/Al₂O₃ is one of the most active alumina-based catalysts for the NO_x reduction with hydrocarbons [3–5]. From a practical point of view, however, its activity is insufficient, especially under actual diesel exhaust gas conditions such as low temperature and the presence of SO_2 [6,7]. Our recent work [8] showed that the addition of 0.01 wt% Pd to 5 wt% Ag catalyst (Ag-Pd (0.01 wt%)/ Al_2O_3) greatly increased the SCR of NO_x reaction activity especially at low temperatures. However, the NO_x E-mail address: honghe@mail.rcees.ac.cn (H. He). conversion over the catalyst decreased quickly in the presence of 80 ppm SO₂. In this study, we prepared a novel Ag–Pd (0.01 wt%)/ Al_2O_3 –SiO₂ for the SCR of NO_x by C₃H₆ with high tolerance of SO₂. We made in situ DRIFTS observation of surface species on SO₂ poisoned Ag–Pd/Al₂O₃ and Ag–Pd/Al₂O₃–SiO₂ during the SCR of NO_x by C₃H₆, and attention was focused on the effect of silica additive on the formation of the key surface intermediate on SO₂ poisoned samples. #### 2. Experimental #### 2.1. Catalyst preparation Ag-Pd/Al₂O₃ catalyst was prepared by an impregnation method described in our earlier paper [8]. Ag-Pd/Al₂O₃-SiO₂ was prepared by wet impregnation of silver nitrate and palladium nitrate onto the silica (50 m² g⁻¹) ^{*} Corresponding author. Tel.: +86 10 62849123; fax: +86 10 62923563. and γ -alumina (200 m² g⁻¹). Prior to impregnation of the metals, 2 wt% silica and γ -alumina powders were finely grounded and then calcined in air at 773 K for 5 h. The Al₂O₃–SiO₂ was dissolved in an appropriate amount of aqueous solution of silver nitrate and palladium nitrate, followed by evaporation to dryness in a rotary evaporator at 333 K under reduced pressure. The resulting paste was dried at 393 K overnight, and then calcined in air at 873 K for 3 h. Before catalytic test, the catalysts were sieved into 20–40 meshes. The SO₂ poisoned samples were taken from the used catalyst that had been tested in the presence of 80 ppm SO₂. #### 2.2. Catalytic tests The catalytic test was measured with a fixed-bed quartz flow reactor (10 mm i.d.) by passing a mixture of 800 ppm NO, 1714 ppm C_3H_6 , 0 or 80 ppm SO₂, and 10 vol% O₂ in highly purified N₂ at a rate of 2000 cm³ min⁻¹ over 0.6 g catalyst. (W/F = 0.018 g s cm⁻³, SV: ~50,000 h⁻¹). 10 vol% water was supplied through a syringe pump and vaporized by a coiled heater at the inlet of the reactor. Water in the reactor effluent gas was removed by passing a condenser instrument before reaching the on-line analyzers. After the reaction had reached steady state, the effluent gas was analyzed by a chemiluminescence NO/NO₂/NO_x analyzer (42C-HL, Thermo Environmental) for NO_x conversion analysis. ## 2.3. In situ diffuse reflectance infra-red fourier transform spectroscopy procedure In situ diffuse reflectance infra-red fourier transform spectroscopy (DRIFTS) spectra were recorded on a NEXUS 670-FTIR equipped with a smart collector and a MCT/A detector cooled by liquid N_2 . The samples for study (ca. 30 mg) were finely grounded and placed in a ceramic crucible. Prior to each experiment, the catalysts were heated in a flow of $10 \text{ vol}\% \text{ } O_2 + N_2$ for 60 min at 573 K and another 60 min at 873 K, then cooled to the desired temperature, and a spectrum of the catalyst in the flow of $O_2 + N_2$ serving as the background was recorded. All spectra were measured under real reaction conditions with a resolution of 4 cm^{-1} and an accumulation of 100 scans. #### 3. Results and discussion #### 3.1. Influence of SO₂ on catalytic activity The reduction of NO_x was evaluated in a model exhaust gas over the $Ag-Pd/Al_2O_3$ and $Ag-Pd/Al_2O_3-SiO_2$ catalysts in the absence or presence of 80 ppm SO_2 as shown in Fig. 1. The results showed that the Fig. 1. The effect of SO₂ on the SCR of NO_x by C₃H₆ over Ag–Pd/Al₂O₃ and Ag–Pd/Al₂O₃–SiO₂ as a function of temperature. *Conditions*: NO, 800 ppm; C₃H₆, 1714 ppm; O₂, 10 vol%; water vapor, 10 vol%; SO₂, 0 or 80 ppm; W/F = 0.018 g s cm⁻³ (GHSV: \sim 50,000 h⁻¹), N₂ balance. (a) Ag–Pd/Al₂O₃, without SO₂. (b) Ag–Pd/Al₂O₃–SiO₂, without SO₂. (c) Ag–Pd/Al₂O₃, 80 ppm SO₂. (d) Ag–Pd/Al₂O₃–SiO₂, 80 ppm SO₂. NO_x conversions over Ag–Pd/Al₂O₃ increased with the increasing of reaction temperature and reached a maximum at 710 K and then decreased with further increasing of reaction temperature, and the highest NO_x conversion was 82% in the absence of SO₂. However, when 80 ppm SO₂ was added into the fed gas, the NO_x conversion over Ag-Pd/Al₂O₃ rapidly decreased and the highest conversion was only 46% at 733 K. The conversion of NO_x over Ag-Pd/Al₂O₃-SiO₂ was similar to that of Ag-Pd/Al₂O₃ in the absence of SO₂. It was also noted that the highest NO_x conversion over Ag-Pd/Al₂O₃-SiO₂ in the presence of 80 ppm SO₂ was 67% at 720 K, which is higher than 46% of Ag-Pd/ Al₂O₃. From the four curves in Fig. 1, the two catalysts almost take the same optimum temperature. It means that the activation energy and the function of active sites do not change by adding SiO2. In order to make clear the role of the addition of SiO₂ in Ag-Pd/Al₂O₃-SiO₂, the SCR of NO_x by C₃H₆ in the presence of SO₂ over the Ag-Pd/Al₂O₃ and Ag-Pd/Al₂O₃-SiO₂ were studied by using the in situ DRIFTS. #### 3.2. FT-IR studies ### 3.2.1. In situ steady state DRIFTS over SO_2 poisoned $Ag-Pd|Al_2O_3$ and $Ag-Pd|Al_2O_3-SiO_2$ Fig. 2(a) shows the in situ DRIFTS spectra of SO_2 poisoned $Ag-Pd/Al_2O_3$ catalyst during the reaction of $NO + C_3H_6 + O_2$ in the steady state with a temperature range of 473–773 K. Based on our previous studies [8,9], the peaks at 1473, 1572, and 1587 cm⁻¹ are associated with adsorbed acetates (1473, 1572 cm⁻¹) and NO_3^- (1587 cm⁻¹). A negative peak at 1394 cm⁻¹ is the evi- Fig. 2. (a) In situ steady state DRIFTS spectra of SO_2 poisoned $Ag-Pd/Al_2O_3$ at various temperatures in a flow of $C_3H_6+O_2+NO$. Conditions: NO, 800 ppm; C_3H_6 , 1714 ppm; O_2 , 10 vol%; O_2 balance. (b) In situ steady state DRIFTS spectra of O_2 poisoned O_2 poisoned $O_3H_6+O_2+NO$. Conditions: NO, 800 ppm; O_3H_6 , 1714 ppm; O_2 , 10 vol%; O_3H_6 0 balance. dence of surface sulfate because we used SO_2 poisoned $Ag-Pd/Al_2O_3$ catalyst as the background. The peak at 1637 cm^{-1} could be associated with a surface enolic structure ($H_2C=CH-O-M$) species, which is due to the partial oxidation of C_3H_6 [8,10]. The peak at 2235 cm^{-1} can be assigned to -NCO surface species [8,11]. Fig. 2(b) shows the in situ DRIFTS spectra of SO₂ poisoned Ag–Pd/Al₂O₃–SiO₂ catalyst, and the reaction conditions were the same as those shown in Fig. 2(a). The bands in Fig. 2(b) could be similarly assigned to adsorbed acetate (1460, 1572 cm⁻¹), bidentate nitrate (1298, 1589 cm⁻¹) and bridging nitrate (1612 cm⁻¹) [8,11–13]. However, there are noticeable differences between Fig. 2(a) and (b); that is, we observed higher surface concentrations of NO₃⁻, enolic species, –NCO and –CN (2131 cm⁻¹) [14] on SO₂ poisoned Ag–Pd/Al₂O₃–SiO₂ catalyst than that on SO₂ poisoned Ag–Pd/Al₂O₃ catalyst. From Fig. 2(b), we can also observe that the -NCO peak appears at temperature higher than 623 K and the NO_x conversion starts to increase from 623 K in Fig. 1. It is well known that there is a correlation between the high efficiency of NO_x reduction by hydrocarbons and the high productivity of a surface -NCO [2,8,9,13]. In other words, the formation of -NCO and Fig. 3. (a) Dynamic changes of in situ DRIFTS spectra over $Ag-Pd/Al_2O_3$ as a function of time in a flow of $NO+O_2$ at 673 K. Before the measurement, the catalyst was pre-exposed to a flow of $C_3H_6+O_2$ for 30 min at 673 K. Conditions: NO, 800 ppm; C_3H_6 , 1714 ppm; O_2 , 10 vol%; O_2 0 balance. (b) Dynamic changes of in situ DRIFTS spectra over O_2 0 min at 673 K. Conditions: NO, 800 ppm; O_2 1 673 K. Before the measurement, the catalyst was pre-exposed to a flow of $O_3H_6+O_2$ 1 for 30 min at 673 K. Conditions: NO, 800 ppm; O_3H_6 1, 1714 ppm; O_2 1 10 vol%; O_2 1 balance. -CN species is the rate-determining step in the SCR of NO_x by propene. The adding SiO_2 results in the high surface concentrations of NO_3^- , enolic species and -NCO on the SO_2 poisoned $Ag-Pd/Al_2O_3-SiO_2$ catalyst, and then the high activity of NO_x reduction. From a comparison of three kinds of surface species (NO₃⁻, enolic species, –NCO) on SO₂ poisoned Ag–Pd/Al₂O₃ and Ag–Pd/Al₂O₃–SiO₂, it is considered that the sulfate species formed on Ag–Pd/Al₂O₃ surface inhibits the formation of enolic species and NO₃⁻, which can react with each other to form –NCO and –CN species. However, the sulfate species formed on Ag–Pd/Al₂O₃–SiO₂ surface hardly inhibits the formation of enolic and NO₃⁻ species. Therefore, Ag–Pd/Al₂O₃–SiO₂ is better than Ag–Pd/Al₂O₃ for the SCR of NO_x by propene. ## 3.2.2. Dynamic changes of in situ DRIFTS of the NO_x reduction over SO_2 poisoned $Ag-Pd/Al_2O_3$ and $Ag-Pd/Al_2O_3-SiO_2$ The reactivity of the surface enolic species towards NO + O₂ over SO₂ poisoned Ag-Pd/Al₂O₃ and Ag-Pd/ Al₂O₃-SiO₂ was studied by the transient response of DRIFTS method. Fig. 3(a) and (b) show the in situ DRIFTS spectra of the SO₂ poisoned Ag-Pd/Al₂O₃ and Ag-Pd/Al₂O₃-SiO₂ in a flow of NO + O₂ after the catalysts were pre-exposed to a flow of $C_3H_6 + O_2$ for 30 min at 673 K. As can be seen from Fig. 3(a), there were two kinds of species, enolic species (1637 cm⁻¹) and acetate (1464, 1576 cm⁻¹) on the SO₂ poisoned Ag-Pd/Al₂O₃ after pre-exposing to a flow of C₃H₆ + O₂ for 30 min at 673 K. Switching the fed gas from $C_3H_6 + O_2$ to $NO + O_2$ led to a slow decrease in the intensity of enolic peaks (1637 cm⁻¹) in 10 min. Simultaneously, the intensity of the -NCO peak (2229 cm⁻¹) slowly increased initially, reached a maximum after 10 min, and then decreased gradually. The similar phenomenon was also observed over the SO₂ poisoned Ag-Pd/Al₂O₃-SiO₂ as shown in Fig. 3(b). More enolic species are formed on the SO₂ poisoned Ag-Pd/ Al₂O₃-SiO₂ catalyst compared to that on poisoned Ag-Pd/Al₂O₃ catalyst by exposing to a flow of $C_3H_6 + O_2$ at 673 K. We found that the peak intensity ratio of enolic species (integrating from 1798 to 1606 cm⁻¹) to acetate species (integrating from 1504 to 1401 cm⁻¹) of the bottom curve is 0.76 in Fig. 3(a). and it is 1.18 in Fig. 3(b). In other words, the formation of enolic species on the SO_2 poisoned $Ag-Pd/Al_2O_3-SiO_2$ is easier than that on the SO_2 poisoned $Ag-Pd/Al_2O_3$ during the $C_3H_6 + O_2$ reaction. The relative high surface concentrations of enolic species and -NCO result in the high activity of SO_2 poisoned $Ag-Pd/Al_2O_3-SiO_2$. He and coworkers [8] drew a reaction mechanism for the SCR of NO_x by propene over Pd promoted Ag/Al₂O₃ as shown in Scheme 1. The results obtained in this experiment also support the above mechanism. The adding SiO₂ to Ag–Pd/Al₂O₃ does not change the activation energy and the function of active sites, but does increase the number of working active sites, which results in high surface concentration of enolic species and –NCO. Based on the above experimental results and discussion, the –NCO formation reaction between the surface enolic species and NO₃ is considered as the rate determining step in this mechanism. #### 4. Conclusion Our work shows that Ag-Pd/Al₂O₃-SiO₂ catalyst is a better catalyst than Ag-Pd/Al₂O₃ for the SCR of NO_x by C₃H₆ in the presence of SO₂. The SO₂ poisoned Ag-Pd/Al₂O₃ surface inhibits the formation of enolic species and NO₃⁻. The surface enolic species and NO₃⁻ can react with each other to form -NCO species, which is the rate determining step. However, the SO₂ poisoned Ag-Pd/Al₂O₃-SiO₂ surface hardly inhibits the formation of enolic and NO₃⁻ species. Therefore, the addition of SiO₂ into Ag-Pd/Al₂O₃ promotes the SCR of NO_x by C₃H₆ in the presence of SO₂. Further studies on surface sulfate on Ag-Pd/Al₂O₃-SiO₂ and Ag-Pd/Al₂O₃ catalysts are in progress and the details are expected in the next paper. #### Acknowledgements This work was financially supported by the Innovation Program of the Chinese Academy of Sciences (KZCX3-SW-430) and the State Hi-tech Research and Scheme 1. Reaction mechanism of SCR-NO_x by C₃H₆ over Pd promoted Ag/Al₂O₃. Development Project of the Ministry of Science and Technology, People's Republic of China (Grant 2003AA643010). #### References - [1] Y. Traa, B. Burger, J. Weitkamp, Micropor. Mesopor. Mater. 30 (1999) 3. - [2] R. Burch, J.P. Breen, F.C. Meunier, Appl. Catal. B 39 (2002) 283. - [3] T. Miyadera, Appl. Catal. B 2 (1993) 199. - [4] S. Sumiya, M. Saito, H. He, Q. Feng, N. Takezawa, Catal. Lett. 50 (1998) 87. - [5] S. Satokawa, K. Shimizu, A. Satsuma, T. Hattori, J. Shibata. Appl. Catal. B 42 (2003) 179. - [6] F.C. Meunir, J.R.H. Ross, Appl. Catal. B 24 (2000) 23. - [7] S. Satokawa, K. Yamaseki, H. Uchida, Appl. Catal. B 34 (2001) 299 - [8] J. Wang, H. He, Q. Feng, Y. Yu, K. Yoshida, Catal. Today 93–95 (2004) 783. - [9] S. Sumiya, H. He, A. Abe, N. Takezawa, K.J. Yoshida, J. Chem. Soc., Faraday Trans. 94 (1998) 2217. - [10] Y. Yu, H. He, Q. Feng, J. Phys. Chem. B 107 (2003) 13090. - [11] S. Kameoka, Y. Ukisu, T. Miyadera, Phys. Chem. Chem. Phys. 2 (2000) 367. - [12] K. Shimizu, J. Shibata, H. Yoshida, A. Satsuma, T. Hattori, Appl. Catal. B 30 (2001) 151. - [13] Y. Yu, H. He, Q. Feng, H. Gao, X. Yang, Appl. Catal. B 49 (2004) 159. - [14] F.C. Meunier, V. Zuzaniuk, J.P. Breen, M. Olsson, J.R.H. Ross, Catal. Today 59 (2000) 287.