Mechanism of Heterogeneous Oxidation of Carbonyl Sulfide on Al₂O₃: An *in Situ* Diffuse Reflectance Infrared Fourier Transform Spectroscopy Investigation # Junfeng Liu, Yunbo Yu, Yujing Mu, and Hong He* State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China Received: October 4, 2005; In Final Form: December 17, 2005 Heterogeneous reaction of carbonyl sulfide (OCS) on the surface of different types of alumina (Al₂O₃) at 298 K was investigated in a closed system and a flowed system using *in situ* diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The effects of calcination temperature of the Al₂O₃ on its catalyzed reactivity were studied. The crystal structure and surface area of the Al₂O₃ were characterized using X-ray diffraction (XRD) and the Brunauer–Emmett–Teller (BET) method. This paper revealed that adsorbed OCS could be catalytically oxidized on the surface of Al₂O₃ to form *gas-phase* CO₂ and *surface* hydrogen carbonate (HCO₃⁻) and sulfate (SO₄²⁻) species at 298 K. The surface hydroxyl (OH) species on the Al₂O₃ had been found to be the key reactant for the heterogeneous oxidation of OCS. Furthermore, the *surface* hydrogen thiocarbonate (HSCO₂⁻) species, an intermediate formed in the reaction of OCS with OH, can be observed on the thermaltreated Al₂O₃. On the basis of these results, the reaction mechanism of heterogeneous oxidation of OCS on Al₂O₃ *is* discussed. #### 1. Introduction Carbonyl sulfide (OCS) is the most abundant atmospheric sulfur *containing* gas in the remote troposphere. ^{1,2} It is relatively inert in the troposphere, and it can be transported into the stratosphere where its *photooxidation* is considered to be an important source of stratospheric sulfate during volcanically quiescent periods. ^{1–5} From the point of view of the environment, it is important to study the global OCS cycle. Most studies focus on the homogeneous reaction of OCS with OH in the *gas-phase* and the consumption of OCS by the plants, soil, etc. ⁵ Heterogeneous interactions between gaseous molecules with wet or dry aerosol particles have gained considerable interest since they have the potential to alter the process of atmospheric chemistry significantly. ^{4,6} The surface of oxide particles in the atmosphere can adsorb and catalyze reactions of trace gases and, thus, change the chemical balance of the atmosphere. ^{7,8} Aluminum is one of the most abundant elements *in atmospheric particles*. It has been reported that alumina (Al₂O₃) surface catalyzes the oxidation of H₂S or CS₂.^{9,10} However, to our knowledge, very few studies have examined the possibility of heterogeneous reaction and the conversion pathway of OCS on the surface of atmospheric particles. Therefore, we studied the reaction mechanism of OCS on the surface of Al₂O₃ as a simplified model. To understand the mechanism of heterogeneous reaction of OCS on the Al₂O₃ surface, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was used in this study. DRIFTS can be used to observe the nature of the interaction of gas with a solid surface. In addition, *in situ* DRIFTS is especially useful to explore mechanisms of heterogeneous reactions of gases on a solid surface by providing information on reactive intermediates formed on the surface. The present paper is devoted to a systematic *in situ* DRIFTS study on the mechanism of the heterogeneous reaction of OCS on the surfaces of four types of Al_2O_3 . The surface hydrogen carbonate (HCO₃⁻), *hydrogen thiocarbonate* (HSCO₂⁻), and sulfate (SO₄²⁻) species were found to be the major products formed from heterogeneous oxidation of OCS on the surface of Al_2O_3 . *On the basis of* the experimental results, a composite reaction mechanism of heterogeneous oxidation of OCS on Al_2O_3 is proposed. #### 2. Experimental Section **2.1. Materials.** Four types of Al₂O₃ used in this experiment were prepared from boehmite (AlOOH, Shandong aluminum Corporation) by calcining at different temperatures. The samples of Al₂O₃-A, Al₂O₃-B, Al₂O₃-C, and Al₂O₃-D were obtained by calcining AlOOH at 573, 873, 1273, and 1473 K for 3 h, respectively. Before DRIFTS measurement, all Al₂O₃ samples were pretreated in an *in situ* infrared cell by heating in 100 mL/min of O₂ at 873 K (except the Al₂O₃-A sample which was heated at 573 K) for 3 h. All reactant gases were used without further purification as follows: *Carbonyl sulfide* (OCS, 2%, OCS/N₂, Scott Specialty Gases Inc.); O₂ (99.99% purity, Beijing AP BEIFEN Gases Inc.). **2.2.** Techniques of Characterization. *BET Experiment*. The nitrogen adsorption—desorption isotherms were obtained at 77 K over the whole range of relative pressures, using a Micromeritics ASAP 2000 automatic equipment. Specific areas were computed from these isotherms by applying the Brunauer—Emmett—Teller (BET) method. *X-ray Diffraction Experiment.* The samples were characterized by X-ray diffractometry using a computerized Rigaku D/max-RB diffractometer (Japan, Cu Ka radiation, 1.54056 nm). The step scans were taken over a 2θ range of $10-90^{\circ}$ in steps of 0.02° /s. *In Situ DRIFTS Experiment. In Situ* DRIFTS spectra were recorded on a NEXUS 670 (Thermo Nicolet Instrument Corporation) FT-IR, equipped with an *in situ* diffuse reflection ^{*} Corresponding author. Phone: +86-10-62849123. Fax: +86-10-62849123. E-mail: honghe@ rcees.ac.cn. Figure 1. X-ray diffraction patterns of Al₂O₃ samples. TABLE 1: Specific Area of the Al₂O₃ and AlOOH Samples | sample | AlooH | Al ₂ O ₃ -A | Al ₂ O ₃ -B | Al ₂ O ₃ -C | Al ₂ O ₃ -D | |------------------------------|-------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | BET area (m ² /g) | 318 | 277 | 257 | 121 | 12 | chamber and a high-sensitivity mercury cadium telluride (MCT) detector cooled by liquid N_2 . The sample (about 11 mg) for the in situ DRIFTS studies was finely ground and placed into a ceramic crucible in the in situ chamber. The total flow rate was 100 mL/min in all the flow systems, and the volume of the closed system was 30 mL. The reference spectrum was measured after the pretreated sample was cooled to 298 K in a purified O_2 stream. The infrared spectra were collected and analyzed using a data acquisition computer with OMNIC 6.0 software (Nicolet Corp.) installed. All spectra reported here were recorded at a resolution of 4 cm⁻¹ for 100 scans. **2.3.** Calibration Curve of the Gas-Phase OCS Concentration. A series of *in situ* DRIFTS spectra at a steady state of the flow system with various concentrations of OCS (40–2000 ppm) were recorded at 298 K. The integrated areas of the absorption peak of gaseous OCS in the range of 1980–2120 cm⁻¹ have a linear correlation with the concentration of OCS gas ($R^2 > 0.99$). The concentration of *gas-phase* OCS was determined by measuring the *in situ* DRIFTS spectra peak areas of gaseous OCS. ### 3. Results and Discussion **3.1. Characterizations.** *BET*. BET results are shown in Table 1. The surface areas of the AlOOH, Al₂O₃-A, Al₂O₃-B, Al₂O₃-C, and Al₂O₃-D samples were decreasing with the increasing calcination temperature. *X-ray Diffraction.* The XRD patterns of all samples of *AlOOH* and *AlOOH* calcined at 573, 873, 1273, and 1473 K are presented in Figure 1. The Al₂O₃-A sample shows a characteristic of an amorphous structure and still exists mainly as AlOOH. Signals due to the γ-Al₂O₃ ($2\theta=67^{\circ}$, 46°, and 37°) can be seen in the type Al₂O₃-B sample. ¹¹ The Al₂O₃-C sample exists mainly as the crystal of θ-Al₂O₃, and the crystal of γ-Al₂O₃ is also observed in Al₂O₃-C. ^{12,13} The Al₂O₃-D sample exists mainly as the crystal of α-Al₂O₃ evidence in line at $2\theta=43^{\circ}$, 35°, and 57°. ^{12,13} With rising of the calcination temperature, the crystal structure of Al₂O₃ changes from γ-Al₂O₃ to θ-Al₂O₃ and then to α-Al₂O₃. ¹⁴ 3.2. Heterogeneous Reaction of OCS on the Al_2O_3 samples in a Closed System. The Al_2O_3 -A sample (AlOOH calclined at 573 K for 3 h) was exposed to a flow of 1000 ppm OCS \pm 95% O_2 at 298 K for 5 min, and then, the inlet and outlet were **Figure 2.** Dynamic changes of *in situ* DRIFTS spectra of the Al_2O_3 -A sample as a function of time after exposure to 1000 ppm OCS + 95% O_2 in a closed system at 298 K. **Figure 3.** Heterogeneous reaction of 1000 ppm OCS + 95% O_2 on the Al_2O_3 -A, Al_2O_3 -B, Al_2O_3 -C, and Al_2O_3 -D samples or a gold mirror at 298 K in a closed system. closed. The in situ DRIFTS spectra on the Al₂O₃-A sample were recorded as a function of time and are shown in Figure 2. Strong peaks of gas-phase OCS appeared at 2071 and 2052 cm⁻¹. 15,16 A pair of peaks of gaseous carbon dioxide (CO₂) was observed at 2337 and 2361 cm⁻¹. 17,18 The bands at 1647 and 1412 cm⁻¹ are due to $v_{as}(OCO)$ and $v_{s}(OCO)$ of surface HCO_3^- species, respectively, $^{15,17-19}$ and the very weak band at 1354 cm⁻¹ is assigned to surface SO_4^{2-} species. $^{20-24}$ It is also found that the peaks for gas-phase CO₂ and surface SO₄²⁻ species increased in intensity with time, while the peaks of gaseous OCS diminished. The bands for HCO₃⁻ were not grown apparently from 2 to 20 min, because the surface HCO₃⁻ species is the intermediate of OCS oxidation, and exist in a dynamic balance process of formation and consumption. These results suggest that OCS in O2 can be finally converted into gas-phase CO2 and surface SO_4^{2-} species on the Al_2O_3 -A sample surface at 298 K. The same set experiments were also carried out using the Al_2O_3 -B (γ -Al $_2O_3$), Al_2O_3 -C (θ -Al $_2O_3$), and Al_2O_3 -D (α -Al $_2O_3$) samples, respectively. The *gas-phase* OCS concentrations shown Figure 4. Dynamic changes of in situ DRIFTS spectra of the Al_2O_3 -A sample as a function of time in a flow of 1000 ppm OCS + 95% O_2 at 298 K. Figure 5. Dynamic changes of in situ DRIFTS spectra of the Al_2O_3 -A sample as a function of time in a flow of 1000 ppm $CO_2 + 95\% O_2$ at 298 K. in Figure 3 were determined by comparing the OCS absorbance peak area with the calibration curve of the gas-phase OCS concentration. To distinguish the effect of the surface of the system on the loss of OCS, a control experiment was performed under the same conditions by replacing Al₂O₃ sample with a gold mirror. In this case, only a very weak change of the gasphase OCS concentration was observed during the experiment, indicating that the system may consume a small quantity of OCS through the adsorption or the heterogeneous reaction catalyzed by the surface of the system. The concentration of gaseous OCS drastically decreases with the Al₂O₃-A sample, whereas it decreases mildly with the Al₂O₃-B, Al₂O₃-C, and Al₂O₃-D samples. It is thought that the surface area has an important influence on the absorption and reaction of OCS; however, the Al₂O₃-A and Al₂O₃-B samples have similar surface areas, but they exhibit different reaction rates. Therefore, there must be other factor affecting the decrease of OCS. 3.3. Dynamic State in Situ DRIFTS Study of OCS + 95% O₂ on the Al₂O₃-A Samples in a Flow System. To gain further information about the reaction of OCS on the Al₂O₃-A sample, in situ DRIFTS spectra of the Al₂O₃-A sample as a function of time were measured in a flow of 1000 ppm OCS + 95% O₂ at 298 K (Figure 4). Similar to Figure 2, the peaks due to surface HCO_3^- (1639 and 1412 cm⁻¹) and SO_4^{2-} (1333 cm⁻¹) were observed, and the intensities of these peaks increased with time during 120 min (Figure 4B). On the basis of the previous studies, the peak located at 1242 cm⁻¹ could be assigned as the vibration of *surface* HCO_3^- *species*^{15,17–19} or be assigned to *surface* HSO₃⁻ species.^{25,26} To confirm our assignments about the surface HCO₃⁻ and HSO₃⁻ species, the Al₂O₃-A sample was exposed to a flow of 1000 ppm $CO_2 + 95\%$ O_2 at 298 K. As can be seen in Figure 5B, the vibration peaks of surface $HCO_3^$ species were located at 1655 and 1404 cm⁻¹ on the Al₂O₃-A sample. While the Al₂O₃-A sample was exposed to a flow of Figure 6. Dynamic changes of in situ DRIFTS spectra of the Al_2O_3 -A sample as a function of time in a flow of 200 ppm $SO_2 + 95\% O_2$ at 298 K. Figure 7. Dynamic changes of in situ DRIFTS spectra of the Al_2O_3 -B (γ - Al_2O_3) sample as a function of time in a flow of 1000 ppm OCS + 95% O_2 at 298 K. 200 ppm SO₂ + 95% O₂ at 298 K, as shown in Figure 6B, the vibration peaks of *surface HSO*₃⁻ *species* were located at 1242 cm⁻¹. Therefore, we finally assigned the peak located at 1242 cm⁻¹ (in Figure 4B) to the vibration mode of *surface HSO*₃⁻ *species* instead of *surface HCO*₃⁻ *species*. The broad band centered at 3543 cm⁻¹ was assigned to the ν (OH) stretching of adsorbed H₂O.^{13,27} The peak at 1639 cm⁻¹ was assigned to a combination band produced from ν_{as} (OCO) of surface HCO₃⁻ species and δ (HOH) of adsorbed H₂O, and the peak at 1412 cm⁻¹ was assigned to ν_{s} (OCO) of surface HCO₃⁻ species.^{15,17-19} Meanwhile, it should be noted that introduction of 1000 ppm OCS led to a drastic increase in the intensity of negative peaks at 3740 and 3666 cm⁻¹ in Figure 4A. In the model proposed by Peri,^{28,29} these bands were attributed to the vibrations of surface hydroxyl (OH) species. The consumption of surface OH species meant that the reaction between OCS and surface OH must occur. However, other intermediates, favorable for understanding the mechanism of OCS conversion, were not measured in this rapid reaction. Considering *that* the thermal pretreatment of Al_2O_3 was expected to reduce the surface OH groups, further experiments were performed on the thermal pretreatment of Al_2O_3 samples to observe these intermediates. Figure 7 shows the *in situ* DRIFTS spectra of the Al₂O₃-B sample in a flow of OCS + 95% O₂ at 298 K. The bands at 1653 and 1423 cm⁻¹ provided similar evidence for the formation of surface HCO₃⁻ species, but the intensity ratio of 1653 and 1423 cm⁻¹ indicates a low surface concentration of HCO₃⁻ species and a lot of adsorbed H₂O. It should be noted that a new peak at 1579 cm⁻¹ was observed, which is assignable to *surface hydrogen thiocarbonate (HSCO₂⁻) species* as an intermediate of the hydrolysis of OCS. ^{15,30,31} Meanwhile, the peaks located at 1996 and 1938 cm⁻¹ due to the physically adsorbed OCS were observed at the beginning of the reaction and then diminished. ^{30,31} *This diminishing of the physically adsorbed OCS may be derived from the competition adsorption* Figure 8. Dynamic changes of in situ DRIFTS spectra of the Al₂O₃-C sample as a function of time in a flow of 1000 ppm OCS + 95% O₂ at 298 K. Figure 9. Dynamic changes of in situ DRIFTS spectra of the Al₂O₃-D sample as a function of time in a flow of 1000 ppm OCS + 95% O₂ at 298 K. between the chemically adsorbed surface species (e.g. HCO_3^-) and the physically adsorbed OCS. It is apparent that the thermal treatment of Al₂O₃ could slow OCS oxidation and enable the observation of the reaction intermediate. In the region of OH groups, a drastic increase in the intensity of negative peaks at 3772, 3732, and 3682 cm⁻¹ attributed to the vibrations of surface OH groups (Figure 7A) was observed. These results strongly suggest that the formation of surface HSCO₂⁻ species is derived from the reaction between surface OH species and OCS. Although the thermal treatment of Al₂O₃ could reduce the surface OH species and the formation of surface HSCO₂⁻ species, the conversion rate of surface HSCO₂⁻ species into surface HSO₃⁻ species under this condition might be decreased more greatly; thus, surface HSCO₂⁻ species were clearly detected. This indicates that the surface OH species play an important role in the formation of surface HSCO₂⁻ species and that the surface HSCO₂- species converted into surface HSO₃⁻ and HCO₃⁻ species also need the participation of the surface OH species. To confirm the presence of surface HSCO₂⁻ species as an intermediate of OCS oxidation, the same experiment was performed on the Al₂O₃-C sample (AlOOH calclined at 1273 K for 3 h). As shown in Figure 8, exposure of the sample to OCS resulted in the appearance of surface HCO₃⁻ (1653 and 1435 cm⁻¹), $HSCO_2^-$ (1579 cm⁻¹), and SO_4^{2-} species (1333 cm⁻¹) (Figure 8B), which was also accompanied by the formation of negative peaks at 3755 and 3678 cm⁻¹ due to surface OH groups (Figure 8A). Obviously, the oxidation of OCS shows the same mechanism on the Al₂O₃-B and Al₂O₃-C samples. However, high-temperature calcination of AlOOH resulted in an activity loss of catalytic oxidation for OCS, as evidenced by the lower reaction rate (Figure 3). To further investigate the role of surface OH groups in OCS oxidation on Al₂O₃, the same experiment was performed on the **Figure 10.** Mechanism of heterogeneous oxidation of OCS on the AlOOH and Al₂O₃ samples. Al₂O₃-D sample on which surface OH groups were absent in comparison with the γ -Al₂O₃ sample. As shown in Figure 9A, a small quantity of negative peaks due to OH groups (3739 cm⁻¹) was detected, and no peaks attributable to *surface* HSCO₂⁻, HCO₃⁻, and SO₄²⁻ species were observed (Figure 9B). In addition, the peak due to surface adsorbed H₂O (3398 and 1645 cm⁻¹) was detected. This result confirms our suggestion about the role of *surface* OH groups in OCS oxidation on the γ -Al₂O₃ surface. 3.4. Proposed Mechanism of Heterogeneous Oxidation of OCS on Al_2O_3 . On the basis of the above results, we propose the following possible mechanism of the heterogeneous oxidation of OCS on Al_2O_3 , as shown in Figure 10. OCS first reacted with the surface OH species to form the surface HSCO₂⁻ species on AlOOH and γ-Al₂O₃ at room temperature. The oxidation of surface HSCO₂⁻ species by oxygen containing surface species and the surface OH species proceeded readily, followed by the formation of the surface HCO₃⁻ and SO₄²⁻ species at room temperature. When the oxygen containing surface species were consumed, O₂ in the gas-phase can supplement it so that the oxidation reaction can continue until the surface is fully covered by surface HCO₃⁻ and SO₄²⁻ species. Both the oxygen containing surface species and surface OH species can contribute to this reaction. When the heat-treated Al_2O_3 samples were exposed to OCS + 95% O₂, the reaction between surface OH with surface HSCO₂⁻ species was slowed. At the same time, the conversion rate of surface HSCO₂⁻ species into surface HSO₃⁻ species under this condition might be decreased more greatly. As a result, surface HSCO₂⁻ species became the dominant surface species. This enables the observation of the reaction intermediate during the heterogeneous oxidation of OCS over Al₂O₃. ## 4. Conclusions This study reveals that OCS can be catalytically oxidized on Al₂O₃ surface to produce *gas-phase* CO₂ and surface SO₄²⁻ species as final products at 298 K. *Surface HSCO*₂⁻ *species* were found to be an important intermediate formed by the reaction of OCS with surface OH species. *Surface* HSO₃⁻ and HCO₃⁻ species were also found as reaction intermediates subsequently. The thermal treatment of Al₂O₃ apparently slowed the heterogeneous oxidation of OCS through reducing the surface OH species, which is implied as the key reactant of the reaction **Acknowledgment.** This research was financially supported by the National Natural Science Foundation of China (40275038). #### References and Notes - (1) Crutzen, P. J. Geophys. Res. Lett. 1976, 3, 73-76. - (2) Torres, A. L.; Maroulis, P. J.; Goldberg, A. B.; Bandy, A. R. J. Geophys. Res. 1980, 85, 7357–7360. - (3) Turco, R. P.; Whitten, R. C.; Toon, O. B.; Pollack, J. B.; Hamill, P. *Nature* **1980**, 283, 283–286. - (4) Andreae, M. O.; Crutzen, P. J. Science 1997, 276, 1052-1058. - (5) Watts, S. F. Atmos. Environ. 2000, 34, 761-779. - (6) Baltensperger, U.; Ammann, M.; Kalberer, M.; Gäggeler, H. W. J. Aerosol Sci. 1996, 27, S651–S652. - (7) Ravishankara, A. R. Science 1997, 276, 1058-1065. - (8) Al-Abadleh, H. A.; Grassian, V. H. Surf. Sci. Rep. 2003, 52, 63- - (9) Datta, A.; Cavell, R. G. J. Phys. Chem. 1985, 89, 450-454. - (10) Wang, L.; Zhang, F.; Chen, J. Environ. Sci. Technol. **2001**, *35*, 2543–2547. - (11) Aytam, H. P.; Akula, V.; Janmanchi, K.; Kamaraju, S. R. R.; Panja, K. R.; Gurram, K.; Niemantsverdriet, J. W. J. Phys. Chem. B 2002, 106, 1024–1031 - (12) Lu, H.; Sun, H.; Mao, A.; Yang, H.; Wang, H.; Hu, X. Mater. Sci. Eng., A 2005, 406, 19–23. - (13) Bhattacharya, I. N.; Gochhayat, P. K.; Mukherjee, P. S.; Paul, S.; Mitra, P. K. *Mater. Chem. Phys.* **2004**, *88*, 32–40. - (14) Morterra, C.; Magnacca, G. Catal. Today 1996, 27, 497-532. - (15) Lavalley, J. C.; Travert, J.; Chevreau, T.; Lamotte, J.; Saur, O. J. Chem. Soc., Chem. Commun. 1979, 4, 146–148. - (16) Zittel, P. F.; Sedam, M. A. J. Phys. Chem. 1990, 94, 5801-5809. - (17) Amenomiya, Y.; Morikawa, Y.; Pleizier, G. J. Catal. 1977, 46, 431–433. - (18) Morterra, C.; Zecchina, A.; Coluccia, S.; Chiorino, A. *J. Chem. Soc.*, Faraday Trans. **1977**, 73, 1544–1560. - (19) Molina, R.; Centeno, M. A.; Poncelet, G. J. Phys. Chem. B 1999, 103, 6036-6046. - (20) Saur, O.; Bensitel, M.; Mohammed Saad, A. B.; Lavalley, J. C.; Tripp, C. P.; Morrow, B. A. *J. Catal.* **1986**, *99*, 104–110. - (21) Lavalley, J. C. Catal. Today 1996, 27, 377-401. - (22) Meunier, F. C.; Ross, J. R. H. Appl. Catal., B 2000, 24, 23-32. - (23) Sahibed-Dine, A.; Aboulayt, A.; Bensitel, M.; Mohammed Saad, A. B.; Daturi, M.; Lavalley, J. C. *J. Mol. Catal. A: Chem.* **2000**, *162*, 125–134. - (24) Yang, Q.; Xie, C.; Xu, Z.; Gao, Z.; Du, Y. J. Phys. Chem. B 2005, 109, 5554-5560. - (25) Laniecki, M.; Ziólek, M.; Karge, H. G. J. Phys. Chem. 1987, 91, 4-6. - (26) Mitchell, M. B.; Sheinker, V. N.; White, M. G. J. Phys. Chem. **1996**, 100, 7550–7557. - (27) Goodman, A. L.; Bernard, E. T.; Grassian, V. H. J. Phys. Chem. A **2001**, 105, 6443-6457. - (28) Peri, J. B.; Hannan, R. B. J. Phys. Chem. **1960**, 64, 1526–1530. - (29) Peri, J. B. J. Phys. Chem. 1965, 69, 220-230. - (30) Lavalley, J. C.; Aboulayt, K.; Lion, M.; Bachelier, J.; Hebrard, J. L.; Luck, F. *Proceedings of the American Chemical Society Atlanta meeting*, April 14–19, 1991; 43–49. - (31) Hoggan, P. E.; Aboulayt, A.; Pieplu, A.; Nortier, P.; Lavalley, J. C. *J. Catal.* **1994**, *149*, 300–306.