

Available online at www.sciencedirect.com

Catalysis Today 90 (2004) 263-267

Selective oxidation of ammonia over copper-silver-based catalysts

Min Yang*, Chengqiang Wu, Changbin Zhang, Hong He

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China

Abstract

A novel catalyst based on copper-silver was developed to solve the contradiction between the high conversion temperature of Cu-based catalyst and low N_2 selectivity of Ag-based catalyst during selective oxidation of ammonium gas. The Cu-Ag-based catalyst (Cu 5 wt.%-Ag 5 wt.%/Al₂O₃) displayed a relatively low complete conversion temperature ($<320\,^{\circ}$ C) with a high N_2 selectivity (>95%). Increasing loading of Cu and Ag decreases N_2 selectivity. The low N_2 selectivity of Ag-based catalyst is possibly related to the formation of Ag₂O crystals. Improvement of N_2 selectivity of Ag-based catalyst was obtained by doping Cu to decrease crystallized Ag₂O phase. The temperature programmed reaction (TPR) data show that N_2 O is the main byproduct of oxidation of ammonia at temperature lower than 200 °C. Two bands of nitrate species at 1541 and 1302 cm⁻¹ were observed on Ag 10 wt.%/Al₂O₃ at the temperature higher than 250 °C, which indicates the formation of NO_x during the selective catalytic oxidation of ammonia. No nitrate species was observed on Cu 10 wt.%/Al₂O₃. We proposed that mixing Ag with Cu inhibited the formation of NO_x during the selective catalytic oxidation of ammonia over Cu-Ag/Al₂O₃. O0 2004 Elsevier B.V. All rights reserved.

Keywords: Selective ammonia oxidation; Nitrogen; Copper; Silver; DRIFTS

1. Introduction

Ammonium removal from landfill leachate has long been a big challenge. Biological processes, which have been widely utilized for ammonium removal from municipal wastewater and industrial wastewater, are not a proper candidate for treating landfill leachate because of high ammonium concentration (10^2-10^3 mg/l) and lack of sufficient electron donors for biological denitrification. Magnesium ammonium phosphate (MAP) precipitation as shown in Eq. (1), on the other hand, has been considered to be an effective method for solving the ammonium removal problems because of its high reaction rate and no requirement for electron donors [1–3]. However, the running cost will be very high if MAP is thrown away without recovering its magnesium and phosphate components

$$PO_4^{3-} + Mg^{2+} + NH_4^{+} + 6H_2O \rightarrow MgNH_4PO_4 \cdot 6H_2O$$

 $pK_a = 12.6(25 \,^{\circ}C)$ (1)

E-mail address: yangmin@mail.rcees.ac.cn (M. Yang).

catalyst supported on zeolite Y at 350 °C with the N_2 selectivity as high as 98% [6]. Silver-based catalysts supported on Al_2O_3 demonstrated a much lower conversion temperature ($<200\,^{\circ}$ C). However, the high activity was acquired at the expense of low N_2 selectivity (82% or lower) [7]. In this study, a novel catalyst based on copper-silver was developed to solve the contradiction between conversion temperature and N_2 selectivity on using single metal catalysts. Two kinds of catalysts, i.e., Cu 5 wt.%-Ag 5 wt.%/Al $_2O_3$ and Cu 10 wt.%-Ag 10 wt.%/Al $_2O_3$, were

proposed, and their respective activity and selectivity were

compared with the single metal catalysts. Structural infor-

on the other hand, MAP will be decomposed into ammonium gas and MgHPO₄ when it is heated to a certain tem-

perature with the reasonable temperature of about 300 °C. MgHPO₄ could be utilized for ammonium removal again

instead of fresh magnesium and phosphate chemicals. How-

ever, high concentration ammonia emission will become a

problem for reuse of MAP. Selective oxidation of NH₃ to

N₂ has been studied for different purposes [4–6]. A lot

of catalysts, including γ-Al₂O₃-supported Ni, Fe, Mn, Cu

and Ag, have been utilized for the selective oxidation of

NH₃. NH₃ could be converted to N₂ on a copper-based

^{*} Corresponding author. Tel.: +86 10 6292 3475; fax: +86 10 6292 3543.

mation of the new catalysts was acquired using instruments like X-ray diffraction (XRD) and Fourier transform infrared reflectance (FTIR).

2. Experimental

2.1. Catalyst preparation

Four kinds of catalysts, i.e., Cu 10 wt.%/Al₂O₃, Cu 5 wt.%-Ag 5 wt.%/Al₂O₃, Cu 10 wt.%-Ag 10 wt.%/Al₂O₃, Ag 10 wt.%/Al₂O₃, were respectively prepared by incipient wetness impregnation of Al₂O₃ (gamma type, BET 250 m²/g) with solution of Cu(NO₃)₂, Cu(NO₃)₂–AgNO₃, or AgNO₃, followed by evaporation to dryness in a rotary evaporator under pressure reduction at 60 °C. The wet sample was dried at 120 °C for 12 h, and then calcined in air at 600 °C for 3 h. Before the catalytic test, the catalysts were sieved into 20–40 meshes.

2.2. Catalyst testing

Catalytic activity measurements were carried out in a quartz fixed-bed reactor (15 mm internal diameter). 0.8 g of samples was used for each batch. NH3, O2, and He were mixed in a volume ratio of 1:10:89 before entering the reactor. The flow rates of NH3, O2, and He were controlled by mass flow controllers. The outlet gas was first analysed by Gas Chromatograph for N2, and then washed with acid solution to trap NH₃ in the acid solution and ammonium nitrogen was analysed according to Standard Methods for the Examination of Water and Wastewater (APHA, 1985). The TPR was performed on a typical computer-controlled temperature programmed reduction apparatus. The temperature was ramped from 50 to 400 °C at a rate of 15 °C/min. Fragmentation patterns of NH₃ (m/e = 17), N₂ (m/e = 28), N_2/O (m/e = 44), NO (m/e = 30) and NO_2 (m/e = 46) were determined.

2.3. Catalyst characterization

Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) were recorded in a NEXUS 670-FTIR ($4\,\mathrm{cm^{-1}}$ resolution) equipped with a smart collector and a liquid N_2 cooled MCT detector. The sample (about 30 mg) for study was placed in a ceramic crucible. Before the experiment, the catalyst was firstly pre-treated in a flow of 30% O_2 and 70% N_2 for 60 min at $500\,^{\circ}\mathrm{C}$, then cooled down to a suitable temperature in a flow of O_2 and O_3 for 15 min and a spectrum of the catalyst in the flow of O_3 and O_4 served as the background was recorded. A flow of feed gas mixture controlled by mass flow meters was fed at a flow rate of O_3 ml/min. All spectra were measured under real reaction conditions with a resolution of O_3 and accumulating O_3 scans.

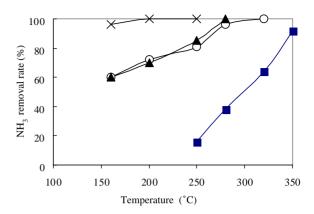


Fig. 1. NH₃ oxidation on catalysts. Reaction conditions: NH₃ 1%; O₂ 10%; He 89%; total flow rate, 400N ml/min; catalyst weight, 0.8 g. (\blacksquare) Cu 10 wt.%/Al₂O₃, (\bigcirc) Cu 5 wt.%-Ag 5 wt.%/Al₂O₃, (\blacktriangle) Cu 10 wt.%-Ag 10 wt.%/Al₂O₃, (\times) Ag 10 wt.%/Al₂O₃.

3. Results and discussion

3.1. NH₃ conversion performance

Figs. 1 and 2 shows the NH₃ conversion performance of Cu 10 wt.%/Al₂O₃, Cu 5 wt.%-Ag 5 wt.%/Al₂O₃, Cu 10 wt.%-Ag 10 wt.%/Al₂O₃ and Ag 10 wt.%/Al₂O₃ under different temperatures. The Cu 10 wt.%/Al₂O₃ presents high N₂ selectivity under different temperatures but has lower oxidation activity under the temperature lower than 350 °C. The Ag 10 wt.%/Al₂O₃ has high oxidation activity under a low temperature of 200 °C but the N₂ selectivity is lower. It indicates that the Ag-based catalyst (Ag 10 wt.%/Al₂O₃) had a higher activity for NH₃ conversion while the Cu-based catalyst (Cu 10 wt.%/Al₂O₃) had a higher N₂ selectivity, which is in accordance with the results of other researchers [6,7]. The Cu 5 wt.%-Ag 5 wt.%/Al₂O₃ catalyst, however, displayed a much lower complete conversion temperature (<320 °C) with a high N₂ selectivity (>95%). It is clear that proper mixing of the two metals could produce the catalyst

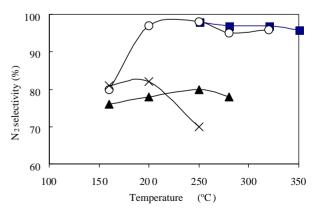


Fig. 2. N₂ selectivity of different catalysts. Reaction conditions: NH₃ 1%; O₂ 10%, He 89%; total flow rate, 400N ml/min; catalyst weight, 0.8 g. (\blacksquare) Cu 10 wt.%/Al₂O₃, (\bigcirc) Cu 5 wt.%-Ag 5 wt.%/Al₂O₃, (\blacktriangle) Cu 10 wt.%-Ag 10 wt.%/Al₂O₃, (\times) Ag 10 wt.%/Al₂O₃.

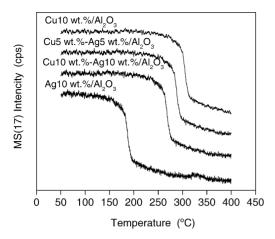


Fig. 3. NH₃ oxidation during NH₃ TPR. Reaction conditions: NH₃ 1%; O₂ 10%, He 89%; total flow rate, 400N ml/min; catalyst weight, 0.8 g.

with both high activity and selectivity. Increasing Cu and Ag loading (Cu $10\,\text{wt.\%-Ag}\ 10\,\text{wt.\%/Al}_2O_3$) did not lead to the improvement of catalyst oxidation activity. The N_2 selectivity, on the other hand, decreased to a level lower than 80% by increasing Ag loading. Therefore, Cu $5\,\text{wt.\%-Ag}\ 5\,\text{wt.\%/Al}_2O_3$ is the best candidate among the four catalysts in terms of conversion efficiency and selectivity.

3.2. TPR profiles

Figs. 3 and 4 shows NH₃ oxidation and N₂ production profiles measured during the NH₃ TPR experiments over Cu 10 wt.%/Al₂O₃, Cu 5 wt.%-Ag5 wt.%/Al₂O₃, Cu 10 wt.%-Ag 10 wt.%/Al₂O₃, Ag 10 wt.%/Al₂O₃ in a flow of NH₃, O₂ and He. It is clear that the formation of N₂ occurred at the temperature of ammonia decomposition for each catalyst. Ammonia oxidation profiles demonstrated that the Ag-based catalyst (Ag 10 wt.%/Al₂O₃) had a much lower conversion starting temperature that of the Cu-based catalyst (Cu 10 wt.%/Al₂O₃). The bimetal catalysts, on the other hand, showed a conversion starting temperature be-

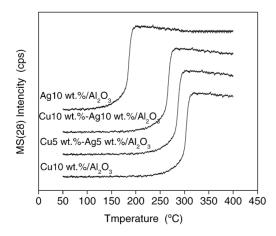


Fig. 4. N_2 production profiles during NH₃ TPR. Reaction conditions: NH₃ 1%; O₂ 10%; He 89%; total flow rate, 400N ml/min; catalyst weight, 0.8 g.

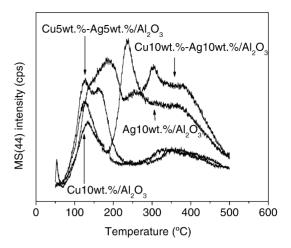


Fig. 5. N_2O production profiles during NH₃ TPR. Reaction conditions: NH₃ 1%; O₂ 10%; He 89%; total flow rate, 400N ml/min; catalyst weight, 0.8 g.

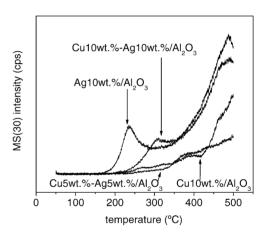


Fig. 6. NO production profiles during NH $_3$ TPR. Reaction conditions: NH $_3$ 1%; O $_2$ 10%; He 89%; total flow rate, 400N ml/min; catalyst weight, 0.8 g.

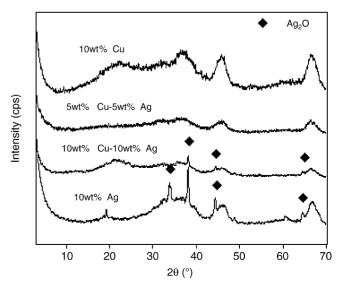


Fig. 7. XRD spectra of the four catalysts.

Table 1 Specific surface area measurement results

Catalysts	Cu 10 wt.%/Al ₂ O ₃	Cu 10 wt.%-Ag 10 wt.%/Al $_2$ O $_3$	Cu 5 wt.%-Ag 5 wt.%/ Al_2O_3	$Ag~10wt.\%/Al_2O_3$
BET surface area (m ² /g)	224	158	193	188
Pore diameter (A)	93	123	137	137
Total pore volume (cc/g)	0.52	0.49	0.66	0.64

tween them. Increasing loading of Ag on $\text{Cu/Al}_2\text{O}_3$ led to the decrease of conversion starting temperature, further indicating that Ag can be used to decrease the NH₃ conversion temperature of $\text{Cu/Al}_2\text{O}_3$.

The production profiles of N_2O and NO, the main side products of selective ammonia oxidation, during NH_3 TPR experiment are shown in Figs. 5 and 6, respectively. N_2O was the main byproduct at temperature lower than $200\,^{\circ}C$ for all of the four catalysts, and another N_2O peak appeared again at temperature between 240 and $310\,^{\circ}C$ for Cu $10\,\text{wt.}\%$ -Ag

 $10\,wt.\%/Al_2O_3$ and Ag $10\,wt.\%/Al_2O_3.$ For Cu $5\,wt.\%-Ag$ $5\,wt.\%/Al_2O_3$ and Cu $10\,wt.\%/Al_2O_3,$ production of N_2O peak decreased significantly at temperatures higher than $200\,^\circ C.$ Fig. 6 indicates that NO began to be produced with increasing temperature. However, Cu $10\,wt.\%-Ag$ $10\,wt.\%/Al_2O_3$ and Ag $10\,wt.\%/Al_2O_3$ produced significantly more NO than Cu $5\,wt.\%-Ag$ $5\,wt.\%/Al_2O_3$ and Cu $10\,wt.\%/Al_2O_3$ at their respective complete conversion temperature. Therefore, the low selectivity of Cu $10\,wt.\%-Ag$ $10\,wt.\%/Al_2O_3$ and Ag $10\,wt.\%/Al_2O_3$ was due to the pro-

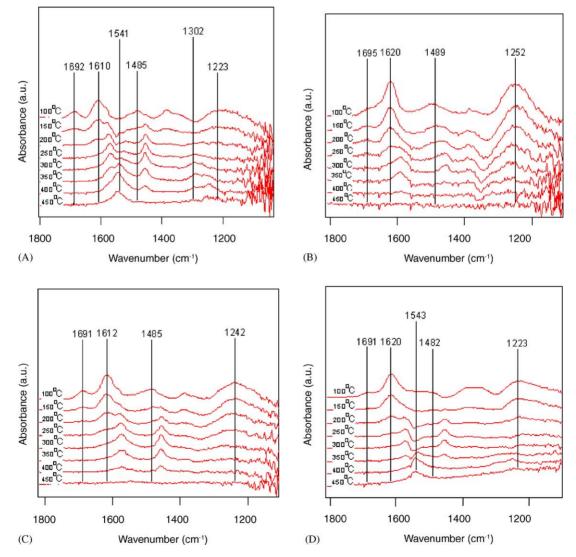


Fig. 8. (A) In situ DRIFT spectra of the surface species on Ag 10 wt.\%/Al_2O_3 . Total flow = 100 N ml/min. (B) In situ DRIFT spectra of the surface species on Cu 10 wt.\%/Al_2O_3 . Total flow = 100 N ml/min. (C) In situ DRIFT spectra of the surface species on Cu 5 wt.%-Ag 5 wt.\%/Al_2O_3 . Total flow = 100 N ml/min. (D) In situ DRIFT spectra of the surface species on Cu 10 wt.%-Ag 10 wt.\%/Al_2O_3 . Total flow = 100 N ml/min.

duction of N_2O and NO during ammonia oxidation. On the other hand, the production of N_2O and NO by Cu 5 wt.%-Ag 5 wt.%/Al $_2O_3$ and Cu 10 wt.%/Al $_2O_3$ at temperatures higher than 200 °C could be neglected, contributing to their high N_2 selectivity.

3.3. XRD results

Fig. 7 shows the XRD spectra of Cu $10\,\text{wt.\%/Al}_2O_3$, Cu $5\,\text{wt.\%-Ag}$ $5\,\text{wt.\%/Al}_2O_3$, Cu $10\,\text{wt.\%-Ag}$ $10\,\text{wt.\%/Al}_2O_3$, Ag $10\,\text{wt.\%/Al}_2O_3$. XRD pattern attributable to crystallized Ag₂O overlapping with $\gamma\text{-Al}_2O_3$ was observed on the Ag $10\,\text{wt.\%/Al}_2O_3$ catalyst, which was in accordance with others results [7]. Only $\gamma\text{-Al}_2O_3$ pattern appears on the Cu $10\,\text{wt.\%/Al}_2O_3$ and Cu $5\,\text{wt.\%-Ag}$ $5\,\text{wt.\%/Al}_2O_3$ catalysts, whereas weak XRD signals of Ag₂O were observed on the Cu $10\,\text{wt.\%-Ag}$ $10\,\text{wt.\%/Al}_2O_3$ catalyst. It is clear that the Ag₂O crystals could be dispersed when mixed with Cu. It is speculated that the low N₂ selectivity of Ag-based catalyst was possibly related to the formation of Ag₂O phase, considering the results of Fig. 2.

Table 1 shows the specific surface areas (SSA) of the four catalysts. Cu 10 wt.%/Al $_2$ O $_3$ has the largest SSA (223 m 2 /g). The SSA of Cu 5 wt.%-Ag 5 wt.%/Al $_2$ O $_3$ was 193 m 2 /g, significantly lower than that of Cu 10 wt.%/Al $_2$ O $_3$. Therefore, the increased catalytic activity was not due to the increase of SSA, but to the bimetal composition.

3.4. DRIFT results

Fig. 8A-D shows the in situ DRIFT spectra of Cu 10 wt.%/Al₂O₃, Cu 5 wt.%-Ag 5 wt.%/Al₂O₃, Cu 10 wt.%-Ag 10 wt.%/Al₂O₃, Ag 10 wt.%/Al₂O₃ in the flow of gas mixture of NH₃ (1%), O₂ (10%) and He (89%) at various temperatures. The bands at 1610–1620 cm⁻¹ and 1200-1260 cm⁻¹ can be assigned to the asymmetric and symmetric deformation modes, respectively, of NH₃ coordinated on Lewis acid sites [5]. The bands at $1687-1697 \,\mathrm{cm}^{-1}$ and $1480-1490 \,\mathrm{cm}^{-1}$ can be assigned to the asymmetric and symmetric deformation modes, respectively, of NH₃ coordinated on Bronsted acid sites [5]. These bands disappeared with increasing sample temperature. Accompanying with the disappearance of NH₃ bands, new bands at 1541 and 1302 cm⁻¹ assigned to nitrate species appeared on Ag 10 wt.%/Al₂O₃ and the band at 1541 cm⁻¹ on Cu 10 wt.%-Ag 10 wt.%/Al₂O₃ [8,9]. No nitrate bands were observed on Cu 10 wt.%/Al₂O₃ and Cu 5 wt.%-Ag

 $5\,wt.\%/Al_2O_3.$ The above results demonstrated that the formation of NO_x is the main reason of the low selectivity of Ag/Al_2O_3 and Cu $10\,wt.\%-Ag~10\,wt.\%/Al_2O_3$ at high temperature.

4. Summary

- 1. Mixing of Ag with Cu improved the NH₃ conversion activity of Cu-based catalyst and the N₂ selectivity of Ag-based catalyst. The Cu 5 wt.%-Ag 5 wt.%/Al₂O₃ displayed a relatively low conversion temperature (<320 °C) with a high N₂ selectivity (>95%).
- 2. The Ag 10 wt.%/Al₂O₃ showed a strong Ag₂O XRD pattern while the Cu 10 wt.%/Al₂O₃ showed no distinct XRD pattern. The low N₂ selectivity of Ag-based catalyst was possibly related to the formation of Ag₂O crystals. Improved N₂ selectivity of Ag-based catalyst was obtained by doping Cu to decrease the crystallized Ag₂O phase.
- 3. On the DRIFT spectra, two nitrate bands appeared on Ag 10 wt.%/Al₂O₃ and one nitrate band on Cu 10 wt.%-Ag 10 wt.%/Al₂O₃ at a temperature over 250 °C, which were not observed on Cu 10 wt.%/Al₂O₃ and Cu 5 wt.%-Ag 5 wt.%/Al₂O₃. N₂O production profiles during NH₃ TPR demonstrated that significant production of N₂O occurred on Ag 10 wt.%/Al₂O₃ and Cu 10 wt.%-Ag 10 wt.%/Al₂O₃ at a temperature between 240 and 310 °C. It is speculated that the formation of NO_x and N₂O is the main reason of the low selectivity of Ag/Al₂O₃ at high temperature.

References

- [1] X.Z. Li, Q.L. Zhao, X.D. Hao, Waste Manage. 19 (1999) 409.
- [2] X.Z. Li, Q. L Zhao, Chemosphere 44 (2001) 37.
- [3] I. Ozturk, M. Altinbas, I. Koyuncu, O. Arikan, C. Gomec-Yangin, Waste Manage. 23 (2003) 441.
- [4] R. Burch, B.W.L. Southward, J. Catal. 195 (2000) 217.
- [5] M. Amblard, R. Burch, B.W.L. Southward, Catal. Today 59 (2000)
- [6] L. Gang, J. van Grondelle, B.G. Anderson, R.A. van Santen, J. Catal. 186 (1999) 100.
- [7] L. Gang, B.G. Anderson, J. van Grondelle, R.A. van Santen, Appl. Catal. B 40 (2003) 101.
- [8] Virginie Zuzaniuk, Frederic C. Meunier, Julian R. Ross, J. Catal. 202 (2002) 340.
- [9] Müslehiddinoglu Jale, M. Albert Vannice, J. Catal. 217 (2003) 442.