Available online at www.sciencedirect.com Catalysis Today 93-95 (2004) 783-789 # Selective catalytic reduction of NO_x with C_3H_6 over an Ag/Al_2O_3 catalyst with a small quantity of noble metal Jin Wang, Hong He*, Qingcai Feng, Yunbo Yu, Kiyohide Yoshida Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China Available online 3 July 2004 #### Abstract The selective catalytic reduction of NO_x with C_3H_6 (C_3H_6 -SCR of NO_x) was carried out in the presence of water vapor over various trace noble metal (Pt, Au and Pd) co-impregnated with Ag/Al_2O_3 catalysts. The Ag-Pd (0.01%)/ Al_2O_3 shows a higher NO_x conversion than Ag/Al_2O_3 does, especially at temperatures ranging from 300 to $500\,^{\circ}$ C. However, the additions of Au and Pt to Ag/Al_2O_3 only resulted in a decrease of activity for the C_3H_6 -SCR of NO_x . In situ DRIFTS spectra suggests that the presence of trace Pd (0.01%) catalyzed the formation of an enolic species which was converted from C_3H_6 , whereas the presence of Pt and Au did not show this effect. The surface enolic species is very active towards NO_2 and NO_3^- , resulting in the formation of an NCO species which is the key reaction intermediate in the selective catalytic reduction of NO_x . © 2004 Elsevier B.V. All rights reserved. Keywords: Ag-Pd/Al₂O₃; Ag-Pt/Al₂O₃; Ag-Au/Al₂O₃; Enolic species; In situ DRIFTS; Catalytic reaction mechanism #### 1. Introduction Since Iwamoto [1], Iwamoto et al. [2] and Held et al. [3] first reported that Cu-ZSM-5 is an effective catalyst for the SCR of NO by hydrocarbons in the presence of excess oxygen, the SCR of NO has received much attention as a potential technology for cleaning NO in various oxygen-rich exhausts of diesel, lean burn gasoline and gas engines. In recent studies [4–12], alumina-supported silver catalysts (denoted as Ag/Al₂O₃) which are relatively durable and inexpensive, are considered to be a candidate for practical use. However, NO_x conversion over Ag/Al₂O₃ is quite low at a temperature range of 300–400 °C, which is a major disadvantage considering that the temperature range is especially important for diesel engines exhaust. On the other hand, catalysts based on platinum group metals, such as well-known three-way catalysts, can eliminate NO_x , CO and unburned hydrocarbons altogether in the exhaust of gasoline engines which operate close to stoichiometric conditions. Unfortunately, those catalysts are almost all ineffective for the selective catalytic reduction of NO_x in the presence of excess oxygen when the temperature is over $400^{\circ}C$ [13,14]. A general method used to improve catalytic performance is the modification of active sites by a dose of a second element. In this case, noble metal is one of the candidates because Obuchi et al. [13] have found that NO is reduced with C₃H₆ at lower temperatures over noble metal catalysts such as Pt/Al₂O₃ and Pd/Al₂O₃. With respect to Ag catalysts, we previously found that the C_3H_6 -SCR of NO_x over the Ag/Al₂O₃ catalyst was effectively enhanced below 500 °C even in the presence of water vapor by the addition of trace Pd [15,16]. The positive effect of Pd was also reported by Masuda et al. [17] using Ag-Pd/mordenite. Seker et al. [18] showed a negative effect of Au on Ag/Al₂O₃ for NO_x reduction with C₃H₆. Previous studies [15,17,18] have shown that noble metals of more than 0.1 wt.% added to Ag/Al₂O₃ always resulted in a negative effect, but the mechanism of the additive effect has not been evaluated clearly. In this paper, we elucidate the additive effect of noble metals (Pt, Au and Pd) at low concentrations (below 0.05 wt.%) on the C_3H_6 -SCR of NO_x in the presence of water vapor using co-impregnated $Ag-Pt/Al_2O_3$, $Ag-Au/Al_2O_3$ and $Ag-Pd/Al_2O_3$ catalysts. ^{*} Corresponding author. Tel.: +86 10 62849123 fax: +86 10 62923563. *E-mail address:* honghe@mail.rcees.ac.cn (H. He). #### 2. Experimental # 2.1. Catalyst preparation The Ag/Al₂O₃ (Ag metal loading: 5 wt.%), Ag–Pt/Al₂O₃, Ag–Pd/Al₂O₃ and Ag–Au/Al₂O₃ catalysts were prepared by an impregnation method. The γ -Al₂O₃ powder (200 m² g⁻¹) was dissolved in an appropriate amount of aqueous solution of AgNO₃, followed by the small amount of H₂PtCl₆, Pd(NO₃)₂ or H[AuCl₄]·4H₂O, respectively. This was followed by evaporation to dryness in a rotary evaporator at 60 °C under reduced pressure. The resulting paste was dried at 120 °C overnight, and then calcined in air at 600 °C for 3 h. Before catalytic test, the catalysts were seived into 20–40 meshes. # 2.2. Catalytic tests The catalytic test was measured with a fixed-bed quartz flow reactor (10 mm i.d.) by passing a mixture of 800 ppm NO, 1714 ppm C_3H_6 , and 10 vol.% O_2 in high pure N_2 at a rate of 4000 cm³ min⁻¹ over 1.2 g catalyst ($W/F = 0.018 \,\mathrm{g\,s\,cm^{-3}}$, SV: $\sim 50\,000\,\mathrm{h^{-1}}$). About 10 vol.% H_2O vapor was supplied with a syringe pump and vaporized by a coiled heater set at the inlet of the reactor. Water was removed from the reactor effluent gas by passing a condenser instrument before reaching online analyzers. After reaching steady state, the effluent gas was analyzed by a chemiluminescence $NO/NO_2/NO_x$ analyzer (42C-HL, Thermo Environmental) for NO_x conversion analyses. # 2.3. In situ diffuse reflectance infra-red fourier transform spectroscopy (DRIFTS) procedure In situ DRIFTS spectra were recorded on a NEXUS 670 (Thermo Nicolet) FT-IR equipped with a smart collector and a MCT/A detector cooled by liquid N_2 . The sample for studies (ca. 30 mg) was finely ground and placed in a ceramic crucible. Prior to each experiment, the catalyst was heated in the flow of 10 vol.% $O_2 + N_2$ for 60 min at $300 \,^{\circ}\text{C}$ and for another 60 min at $600 \,^{\circ}\text{C}$, then cooled to desired temperature, and a spectrum of the catalyst in the flow of $N_2 + O_2$ serving as the background was recorded. All spectra were measured under real reaction conditions with a resolution of 4 cm^{-1} and an accumulation of 100 scans. #### 3. Results and discussion # 3.1. NO_x reduction over the co-impregnated Ag catalysts The C_3H_6 -SCR of NO_x was evaluated in a model exhaust gas over the $Ag-Pt/Al_2O_3$, $Ag-Au/Al_2O_3$ and $Ag-Pd/Al_2O_3$ catalysts, and compared with that over the Ag (5.0 wt.%)/ Al_2O_3 catalyst. Fig. 1. The catalytic activity for NO_x reduction by C_3H_6 over Ag/Al_2O_3 and $Ag-Pt/Al_2O_3$ catalysts at various temperatures in the presence of water vapor. Reaction conditions: NO, 800 ppm; C_3H_6 , 1714 ppm; O_2 , 10 vol. %; water vapor, 10 vol. %; $W/F = 0.018 \, \mathrm{g \, s \, cm^{-3}}$ (GHSV: $\sim 50000 \, \mathrm{h^{-1}}$); N_2 balance, total flow rate $4000 \, \mathrm{ml \, min^{-1}}$. Fig. 1 shows the reduction of NO_x with C_3H_6 over the $Ag-Pt/Al_2O_3$ catalysts and Ag/Al_2O_3 catalyst. The Ag/Al_2O_3 catalyst exhibited high performance in the NO_x reduction, and the highest level of NO_x , 73%, was achieved at 470 °C. Addition of 0.01 wt.% Pt resulted in a little increase of NO_x reduction at 200–400 °C, while the NO_x reduction greatly decreased at 400–600 °C. NO_x reduction was further suppressed with an increase of Pt content. Fig. 2 shows the reduction of NO_x over the $Ag-Au/Al_2O_3$ catalysts along with that over the Ag/Al_2O_3 catalyst. Addition of 0.01 wt.% of Au to the Ag/Al_2O_3 catalyst also led to the increase of NO_x reduction activity at 220–380 °C. However, when the Au content increased to 0.05 wt.%, NO_x reduction was greatly suppressed at 410–600 °C. Fig. 3 shows the NO_x reduction activity of Ag/Al_2O_3 and $Ag-Pd/Al_2O_3$ catalysts at various temperatures. Both NO_x conversions increased with the increasing of reaction temperature and reached a maximum at 437 °C for Ag-Pd (0.01 wt.%)/ Al_2O_3 and at 470 °C for Ag/Al_2O_3 , Fig. 2. The catalytic activity for NO_x reduction by C_3H_6 over Ag/Al_2O_3 and $Ag-Au/Al_2O_3$ catalysts at various temperatures in the presence of water vapor. Reaction conditions are the same as those shown in Fig. 1. Fig. 3. The catalytic activity for NO_x reduction by C_3H_6 over Ag/Al_2O_3 and $Ag-Pd/Al_2O_3$ catalysts at various temperatures in the presence of water vapor. Reaction conditions are the same as those shown in Fig. 1. and then decreased with the further increase of reaction temperatures. The highest NO_x conversion was 82% over $Ag-Pd/Al_2O_3$, which is higher than that of the 73% recorded over Ag/Al_2O_3 . However, when Pd loading was increased to 0.02 wt.%, 0.04 and 0.05%, NO_x reduction was gradually suppressed at 420–600 °C. Obviously, a trace amount of Pd (0.01 wt.%) added to Ag/Al_2O_3 enhance the NO_x conversion in the presence of excess oxygen and water vapor, while the activity gradually decrease with increase of Pd addition into Ag/Al_2O_3 . These above results show that NO_x reduction over the Ag/Al_2O_3 catalyst is strongly affected by the addition of a small amount of Pt, Au or Pd. The activity of the Ag/Al_2O_3 catalyst for NO_x reduction increases in the presence of a very small amount of Pt, Au or Pd below $400\,^{\circ}$ C. In particular, the addition of 0.01 wt.% Pd effectively enhanced the NO_x reduction at 300–500 °C and led to the extension of the temperature window for effective NO_x reduction. # 3.2. In situ steady state DRIFTS of the NO_x reduction over co-impregnated Ag catalysts To directly investigate the effect of noble metals added into Ag/Al₂O₃ under real catalytic reaction conditions, we carried out experiments using in situ DRIFTS. Conditions for in situ DRIFTS were the same as those shown in Fig. 1. except that flow rate decreased to 300 ml min⁻¹. All in situ DRIFTS spectra were recorded in a steady state at various temperatures of 473, 523, 573, 623, 673, 723, and 773 K. After an exposure of the catalyst to NO+C₃H₆+O₂ mixture gas for 60 min at 473 K, as shown in Fig. 4, many IR peaks appeared in the region between 1700 and 1300 cm⁻¹. According to the previous literatures [8,19,20], the bands at 1304, 1556, and 1610 cm⁻¹ were attributed to bidentate, monodentate, and bridge nitrates, respectively. The bands at 1394 and 1377 cm⁻¹ were attributed to $\delta(-CH_3)$ and $\delta(-CH_2)$ of adsorbed acetate [16,21]. The peaks at 1572 and $1466 \,\mathrm{cm}^{-1}$ were assigned to $v_{as}(COO)$ and $v_{s}(COO)$ of the adsorbed acetate [19-24]. When we increased the reaction temperature, as shown in Fig. 4, the band at 1633 cm⁻¹ first increased gradually, and then decreased gradually, while weak bands at 2229 and $2146\,\mathrm{cm^{-1}}$ could be observed at 523 K. A band at 2229 cm⁻¹ was assigned to an isocyanate (-NCO) species, which is a key intermediate species reported by many researchers [9,11,12,14]. The band at $2146 \,\mathrm{cm}^{-1}$ was assigned to a -CN surface species [8,25]. When temperature was increased to 723 K, the peak at 2229 cm⁻¹ reached the strongest intensity. Meanwhile, the peaks at 1633 and 1304 cm⁻¹ disappeared gradually. The bands at 1466 and 1572 cm⁻¹ were still very strong. From these results we can Fig. 4. In situ DRIFTS spectra of 4% Ag/Al₂O₃ in a steady state at various temperatures in a flow of $C_3H_6 + O_2 + NO$. Feed: the composition is the same as those shown Fig. 1, except that flow rate is $300 \, \text{ml min}^{-1}$. Fig. 5. In situ DRIFTS spectra of $Ag-Pt(0.01 \text{ wt.\%})/Al_2O_3$ in a steady state at various temperatures in a flow of $C_3H_6+O_2+NO$. Feed is the same as those shown in Fig. 4. speculate that the species at $1633 \,\mathrm{cm}^{-1}$ is very active towards $\mathrm{NO_3}^{-1}$ to form key intermediate –NCO, while the activity of acetate is relatively weak. Yu et al. [26] also drew similar results. Fig. 5 shows the IR spectra of Ag–Pt (0.01%)/Al₂O₃ catalyst in the flow of NO + C₃H₆ + O₂ in the steady state at various temperatures. Based on a comparison of Figs. 4 and 5, the bands at 1304, 1560 and 1612 cm⁻¹ were similarly assigned to bands of adsorbed nitrates. The bands at 1576 and 1470 cm⁻¹ were similarly assigned to $\nu_{as}(\text{COO})$ and $\nu_{s}(\text{COO})$ of the adsorbed acetate. The bands at 1394 and 1377 cm⁻¹ were similarly assigned to $\delta(-\text{CH}_3)$ and $\delta(-\text{CH}_2)$ of adsorbed acetate. The principle difference between Figs. 4 and 5 is the peak on the Ag–Pt/Al₂O₃ catalyst at 1633 cm⁻¹ which had almost disappeared, as well as the decreasing peak at 2231 cm⁻¹ that was assigned to the band of a –NCO in Fig. 4. This species is the key intermediate in the reaction and the intensity of this peak decides reaction rate. Fig. 6 shows the IR spectra of the Ag–Au (0.01%)/Al₂O₃ catalyst in the flow of NO+C₃H₆+O₂ in the steady state at various temperatures. The results are quite similar to those shown in Fig. 5. These results are in good agreement with activity tests. Fig. 7 shows the IR spectra of the Ag–Pd $(0.01\%)/Al_2O_3$ catalyst in the flow of NO + C_3H_6 + O_2 in the steady state at various temperatures. Based on the comparison between Figs. 7 and 4, the bands at 1300, 1580, and 1614 cm⁻¹ which were assigned to adsorbed nitrate could also be observed in Fig. 7. The bands at 1572, 1460 (1460–1475), 1377, and 1394 cm⁻¹ were similarly assigned to $\nu_{as}(COO)$, $\nu_s(COO)$, $\delta(-CH_3)$, and $\delta(-CH_2)$ species of the adsorbed acetate, respectively. The biggest difference is the intensity Fig. 6. In situ DRIFTS spectra of $Ag-Au(0.01 \text{ wt.\%})/Al_2O_3$ in a steady state at various temperatures in a flow of $C_3H_6+O_2+NO$. Feed is the same as those shown in Fig. 4. Fig. 7. In situ DRIFTS spectra of Ag-Pd(0.01 wt.%)/Al₂O₃ in a steady state at various temperatures in a flow of $C_3H_6 + O_2 + NO$. Feed is the same as those shown in Fig. 4. of peak at $1637\,\mathrm{cm}^{-1}$ on the Ag–Pd/Al₂O₃ catalyst. According to our previous work [16,26,27], the peak at $1637\,\mathrm{cm}^{-1}$ in Fig. 7 can be assigned to a surface enolic structure (H₂C=CH–O–M⁺) which derived from the partial oxidation of C₃H₆. The conjugation of a H₂C=CH–O–group may induce the vibrational mode of C–C–O to shift to a frequency which is lower than ν (C=C) and higher than ν (C=O) [25]. With increasing temperature, the bands of nitrate (1300 cm⁻¹) and enolic species (1637 cm⁻¹) decreased promptly, while the –NCO band (2233 cm⁻¹) and –CN band (2158 cm⁻¹) [16] progressively appeared. This indicates that the enolic surface species is very active towards nitrate to form an –NCO species. As a result, Ag–Pd/Al₂O₃ has a higher –NCO surface concentration than Ag/Al₂O₃ during the SCR of NO by C₃H₆. This result is in very good agreement with Ag/Al₂O₃ and Ag–Pd/Al₂O₃ activity tests. Fig. 8 shows the IR spectra of Ag–Pd $(0.02\%)/Al_2O_3$ catalyst in the flow of NO + C_3H_6 + O_2 in the steady state at various temperatures. Comparing with Fig. 7, Fig. 8 shows the relative low surface concentration of enolic $(1639\,\text{cm}^{-1})$ Fig. 8. In situ DRIFTS spectra of $Ag-Pd(0.02 \text{ wt.\%})/Al_2O_3$ in a steady state at various temperatures in a flow of $C_3H_6+O_2+NO$. Feed is the same as those shown in Fig. 4. Scheme 1. The proposed reaction mechanism of the SCR-NO_x by C₃H₆ over Pd promoted Ag/Al₂O₃. and NCO species (2229 cm⁻¹). The main species on the catalyst surface are nitrates (1552 and 1302 cm⁻¹) at low temperature ranging from 473 to 573 K and acetate (1564 and 1460 cm⁻¹) at temperatures ranging from 623 to 773 K. Similar results can be achieved over Pd (0.04 and 0.05%) (figures are not shown here). Our activity test results also show that C₃H₆ light off curve monotonously shift to low temperature with increasing of Pd loading (figures are not shown here). From these results, we can draw the conclusion that the addition of trace amounts of Pd is very sensitive to Ag/Al₂O₃ catalyst for the SCR of NO_x reaction. The oxidation ability of the catalyst increases with increasing Pd addition into an Ag/Al₂O₃; much of C₃H₆ was directly converted into CO₂ instead of enolic surface species which can react with NO₃⁻ to form -NCO species [27]. These above results are in very good agreements with activity results shown in Fig. 3. ## 3.3. Reaction mechanism on Ag–Pd/Al₂O₃ The reaction mechanism of the SCR of NO_x by C_3H_6 over Ag/Al₂O₃ has been proposed with R-ONO, R-NO₂ and -NCO as the key intermediates [8,10,22]. Several intermediates have been proposed to take part in the reduction of NO_x, such as inorganic NO₃⁻ [8,9] and organic CH₃COO⁻ [9,21]. IR spectra have shown that adsorbed nitrates (NO₃⁻) and acetate (CH₃COO⁻) could react to form organic compound such as R-NO₂ [11,12], R-ONO [8,11,12], and –NCO [8,9] during the SCR of NO_x on Al_2O_3 or Ag/Al₂O₃ [9,21,22]. Burch et al. [14] proposed a similar reaction mechanism to all oxide catalysts in a review. They described the mechanism approximately as: NO + $O_2 + C_3H_6 \rightarrow NO_x + C_xH_yO_z \rightarrow R-NO_2 + R-ONO \rightarrow$ $R-NCO + R-CN + NO + O_2 \rightarrow N_2$. However, this mechanism cannot sufficiently explain why Pd promoted Ag/Al₂O₃ has a higher efficiency for the SCR of NO_x over Ag/Al₂O₃ at low temperatures. Our in situ DRIFTS in Fig. 7 shows that an enolic species is the main intermediate which is derived from partial oxidation of C₃H₆ at low temperatures and the reaction mechanism is dramatically altered with the addition of a trace quantity of Pd to Ag/Al₂O₃ (Scheme 1). In the case of Ag-Pd $(0.01\%)/Al_2O_3$, the band at 1637 cm⁻¹ is the main peak at low temperatures. The results indicate that the presence of Pd catalyzes the formation of an enolic species, which is very active towards NO_2 and NO_3^- to form –NCO and –CN, and subsequently into N_2 . Much additional knowledge will be required before a reliable reaction mechanism can be described. Further studies are underway in order to test some of the hypotheses made in this paper. #### 4. Conclusion According to investigate the effect of the addition of different noble metals into Ag/Al₂O₃ we have developed a novel Ag-Pd (0.01%)/Al₂O₃ catalyst for NO_x reduction by C₃H₆ under lean burning conditions. Catalytic tests over Ag-Pd/Al₂O₃ and contrastive Ag/Al₂O₃ showed that loading trace amounts of Pd on Ag/Al₂O₃ leads to a significant improvement of NO_x conversion during the SCR of NO by C₃H₆, especially at low reaction temperatures. However, the trace addition of Au or Pt into Ag/Al₂O₃ have negative effect on the SCR of NO_x by C₃H₆ In situ DRIFTS results suggest that Pd addition catalyzes the partial oxidation of C₃H₆ into a surface enolic species, and the surface enolic species is quite reactive towards NO3- to form a surface NCO species. Based on these results, a new reaction mechanism was proposed with enolic species and NCO species as the key reaction intermediates. #### Acknowledgements This work was financially supported by the State Hi-tech Research and Development Project of the Ministry of Science and Technology, Peoples Republic of China (Grant 2003AA643010) and the Chinese Academy of Sciences Program for Attracting Overseas Professionals. # References - M. Iwamoto, in: Proceedings of the Symposium on Catalytic Technology for the Removal of Nitrogen Oxides, Catal. Soc. Jpn. (1990) - [2] M. Iwamoto, H. Yahiro, S. Shundo, Y. Yu-u, N. Mizuno, Appl. Catal. 69 (1991) L15. - [3] W. Held, A. Köenig, T. Richiter, L. Puppe, SAE Paper 900496, 1990. - [4] T. Miyadera, Appl. Catal. B 2 (1993) 199. - [5] K.A. Bethke, H.H. Kung, J. Catal. 172 (1997) 93. - [6] K. Shimizu, H. Maeshuma, A. Satsuma, T. Hattori, Appl. Catal. B 18 (1998) 163. - [7] S. Sumiya, M. Saito, H. He, Q-C. Feng, N. Takezawa, Catal. Lett. 50 (1998) 87. - [8] S. Sumiya, H. He, A. Abe, N. Takezawa, K.J. Yoshida, J. Chem. Soc. Faraday Trans. 94 (1998) 2217. - [9] S. Kameoka, Y. Ukisu, T. Miyadera, Phys. Chem. Chem. Phys. 2 (2000) 367. - [10] F.C. Meunier, V. Zuzaniuk, J.P. Breen, M. Olsson, J.R.H. Ross, Catal. Today 59 (2000) 287. - [11] F.C. Meunier, J.P. Breen, V. Zuzaniuk, M. Olsson, J.R.H. Ross, J. Catal. 187 (1999) 493. - [12] K. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B 25 (2000) 239. - [13] A. Obuchi, A. Ohi, M. Nakamura, A. Ogata, K. Mizuno, H. Ohuchi, Appl. Catal. B 2 (1993) 71. - [14] R. Burch, J.P. Breen, F.C. Meaner, Appl. Catal. B 39 (2002) 283. - [15] H. He, N. Irite, K. Onai, K. Yoshida, in: Proceedings of the 69th Annual Meeting of Chem. Soc. Jpn., A314. - [16] H. He, J. Wang, Q.C. Feng, Y.B. Yu, K. Yoshida, Appl. Catal. B 46 (2003) 365. - [17] K. Masuda, K. Shinoda, T. Kato, K. Tsujimura, Appl. Catal. B 15 (1998) 29. - [18] E. Seker, J. Cavataio, E. Gulari, P. Lorpongpaiboon, S. Osuwan, Appl. Catal. A 183 (1999) 121. - [19] M. Haneda, Y. Kintaichi, M. Inaba, H. Hamada, Appl. Surf. Sci. 121/122 (1997) 391. - [20] T. Tanaka, T. Okuhara, M. Misono, Appl. Catal. B 4 (1994) L1. - [21] K. Shimizu, J. Shibata, H. Yoshida, A. Satsuma, T. Hattori, Appl. Catal. B 30 (2001) 151. - [22] K. Shimizu, H. Kawabata, A. Satuma, T. Hattori, Appl. Catal. B 19 (1998) L87. - [23] K. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B 25 (2000) 239 - [24] K. Shimizu, H. Kawabata, H. Maeshima, A. Satuma, T. Hattori, J. Phys. Chem. B 104 (2000) 2885. - [25] Standard IR Spectra, Sadtler Research Labs. - [26] Y.B. Yu, H. He, Q.C. Feng, J. Phys. Chem. B 107 (2003) 13090. - [27] Y.B. Yu, H. He, Q.C. Feng, H.W. Gao, X. Yang, Appl. Catal. B 49 (2004) 159.