Activation of solid surface as catalyst

Ken-ichi Tanaka *, Hong He

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

A R T I C L E I N F O

Article history:
Received 17 January 2012
Received in revised form 25 April 2012
Accepted 7 May 2012
Available online 13 June 2012

Keywords:
Reconstructive activation
Working catalyst surface
Active surface compounds
Structure insensitive catalysis
PROX reaction
NO reduction

A B S T R A C T

The original surface of a solid is not always active as a catalyst, but the surface becomes active during reaction. Activation of surfaces may be classified as follows: (i) originally active surfaces, (ii) intermediates produced by reaction with surface atoms, (iii) formation of active sites with functional groups, (iv) formation of active surface compounds, (v) cooperation of multiple catalytic processes. In this review, we discuss two important environmental reactions, one is NO + H2 → 1/2 N2 + H2O catalyzed by single crystal Pt-Rh-ally and Pt/Rh or Rh/Pt bimetals, and the other is the preferential oxidation (PROX) reaction of CO in H2 by FeO(1 1 1) Pt catalyst and Pt-supported carbon with Ni–MgO. The specific activity of the Pt-Rh catalyst arises from the formation of special ordered bimetallic surface layers composed of (−Rh−O−) on Pt-layer. Formation of an active layer compound was confirmed on Pt0.25Rh0.75(1 0 0) alloy, Pt/Rh(1 0 0), Pt/Rh(1 1 1) and Rh/Pt(1 1 0) bimetal surfaces. The PROX reaction of CO in H2 was attained on two new catalysts, one being FeOx/Pt/TiO2 (ca. 100wt.% FeOx) and the other Pt supported on carbon with Ni–MgO. The mechanism of the PROX reaction of CO was deduced by in situ DRIFT spectroscopy, which indicates a coupled reaction of CO + OH− → HCOO− and HCOO− + OH → CO2 + H2O.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

This is a review article suggesting a concept for the formation of active surfaces. The surface working as catalyst is sometimes quite different from the original surface, that is, the surface is changed during catalysis. We empirically know that the performance of catalysts is influenced by precursor compounds, support materials, promoting materials, pretreatment temperature, and preheating time, etc. However, the performance of obtained catalyst has been explained in surprisingly primitive ways. That is, activity is explained in relation to the particle size, local bonding structure, coordination atoms and bond length, etc. derived by characterization of catalyst. Catalysis is premised in the conceptual category based on adsorption and reaction. However, the working surface as catalyst is not as simple as supposed, that is, the working surface is different from the original surface but is composed of active materials as has schematically described below (Fig. 1).

As is known, the oxidation of CO with O2 on Pt is a typical example of category-(i), which was experimentally confirmed by Golchet and White [1]. For catalysis of this category, the activity depends on the kind of metals and the surface. The methanation reaction of CO on Ni, CO + 3H2 → CH4 + H2O, is a typical catalysis of category-(ii). As demonstrated by Goodman et al. [2], the turnover frequency for the reaction of CO + 3H2 → CH4 + H2O is entirely structure insensitive on various type of Ni-catalysts. This structure-insensitive catalysis was well-rationalyzed by Tanaka and Hirano [3] as a reaction via the Ni5C intermediate and its hydrogenation; 4 Ni + CO + H2 → Ni5C + H2O, Ni5C + H2 → CH2 = CH4 + 4 Ni, where the catalysis is caused by recycling of Ni atoms. The ammonia synthesis reaction by Fe-catalyst might be a similar case of catalysis by category-(ii). As Somorjai and his coworkers showed, the ammonia synthesis reaction on Fe single crystal surfaces depends markedly on the crystal planes in a sequence of Fe(1 1 1) ≈ Fe(1 0 0) ≈ Fe(1 1 0) [4,5]. They found a dramatic promoting effect of Al2O3 on the activity. When Fe(1 1 1), Fe(1 0 0), and Fe(1 1 0) were covered with 2 mL of Al2O3 and heated in the presence of H2O at 723 K, all crystal planes became as active as the Fe(1 1 1) surface [6,7]. Somorjai explained the high activity of Fe(1 1 1) by coordination seven sites denoted as C–7, and the structure-insensitive activity enhanced by Al2O3 was also explained by the formation of C–7 sites. However, we propose a different mechanism for such structure-insensitive activity. The reaction of N atom with Fe atom follows a different mechanism, that is, surface Fe atoms react with N atoms to form a reactive Fe,N intermediate, and its hydrogenation provides ammonia. If this is the mechanism for ammonia synthesis, the reaction might be described by Fe + 1/2 N2 → Fe,N, Fe,N + 3/2H2 → NH3 + Fe*, and steady-state reaction is catalyzed by recycling of Fe atoms, which might be increased by loading Al2O3. As a result, the activity as catalyst is enhanced by loading Al2O3, and the activity becomes structure insensitive.

Catalysis by category-(iii) is similar to that by homogeneous catalysis. A typical example is the hydrogenation of olefins as well as the metathesis reaction of olefins on oxides. For example,
sublimated MoO$_3$ (presumably MoO$_2$) on the inside of a glass tube is entirely inactive, but it changes to a super active catalyst for the olefin metathesis reaction by attaching carbene on Mo sites (Mo=CHR). This surface, however, catalyzes neither the hydrogen scrambling nor the isomerization of olefins, but the olefin metathesis reaction is catalyzed in a stereo-specific manner [8,9]. On the other hand, the catalysis by categories-(iv) and (v) is quite different from homogeneous catalysis. A Pt/Rh three way catalyst activated by category-(iv), and the PROX reaction of CO in H$_2$ by FeO$_x$/Pt/TiO$_2$ are discussed in this paper.

2. Formation of active layer for the reduction of NO on Pt–Rh catalyst

The melting temperature of Pt and Rh is very high (nearly 2000 K) so that a clean Pt$_{0.25}$Rh$_{0.75}$(1 1 0) alloy surface was stable in UHV and no structural and compositional changes occurred up to ca. 1000 K (half of the melting temperature). However, the structure and composition of the Pt–Rh(1 1 0) surface were dramatically changed by raising the temperature in O$_2$ or in NO to 400–450 K, where a Rh atom was extracted on the topmost surface and the LEED pattern changed from p(3 × 1) to a unique p(3 × 1) pattern as shown in Fig. 2(a) [10]. It was confirmed that the Pt–Rh(1 1 0) alloy surface as well as the bimetallic surfaces of Pt-deposited Pt/Rh(1 1 0) and Rh-deposited Rh/Pt(1 1 0) gave the same p(3 × 1) LEED pattern by raising the temperature in NO or O$_2$ to 450–600 K. It was also confirmed that the bimetallic surfaces of Rh/Pt(1 1 0) and Pt/Rh(1 1 0) were also readily changed to p(1 × 2) and c(2 × 2) structures by raising the temperature in NO or O$_2$.

The most remarkable feature is that the catalytic activity of the Pt–Rh(1 1 0) alloy and the bimetas of Pt/Rh(1 1 0), Rh/Pt(1 1 0), Rh/Pt(1 1 0), Pt/Rh(1 1 0) gave almost equal catalytic activity for the reaction of NO+H$_2$ → 1/2 N$_2$ + H$_2$O as shown in Fig. 2, although their LEED patterns are p(3 × 1)Pt–Rh(1 1 0)–O, p(1 × 2)Rh/Pt(1 1 0)–O and c(2 × 2)Pt/Rh(1 1 0)–O. That is, Pt–Rh(1 1 0) alloy and Pt/Rh(1 1 0), Pt/Rh(1 1 0), Rh/Pt(1 1 0) and Rh/Pt(1 1 0) bimetallic surfaces give structure-insensitive high catalytic activity for the reaction of NO+H$_2$ → 1/2 N$_2$ + H$_2$O, but the activity of Pt(1 1 0), Pt(1 1 0), Rh(1 1 0) and Rh(1 1 0) surfaces depends markedly on the crystal planes as shown in Fig. 3(a), (b)-1, and (b)-2 [14–17].

The LEED pattern shows different periodic arrays of surface atoms on different crystal planes, but equal catalytic activity suggests the formation of the same compounds on these surfaces. The STM image was attained on a p(3 × 1) Pt–Rh(1 1 0)–O surface by us [11]. We observed three different STM images for a p(3 × 1)Pt–Rh(1 1 0) surface at different bias potentials. As shown in Fig. 2(b)-ii, two images were observed by an abrupt change of the tip during scanning. Taking these results into account, we derived a structure model of the p(3 × 1) Pt–Rh(1 1 0)–O surface as shown in Fig. 2. When the p(3 × 1) Pt–Rh(1 1 0)–O was exposed to O$_2$ for more than 200 L at 600 K, the LEED pattern changed from the p(3 × 1) to a c(2 × 2)-hex as shown in Fig. 2(a) [12]. The STM image of the c(2 × 2)-hex Pt–Rh(1 1 0) surface is shown in Fig. 2(c), which shows two slightly rotated compressed domains of (−Rh−O−), which is similar to the STM image with a rotated array of the surface Pt-lattice on a clean (6 × 20)–Pt(1 1 0)–hex surface. Recently, a similar phenomenon was reported on a FeO$_x$/Pt(1 1 1) surface [13].

It should be remarked once again that Pt–Rh is a random alloy, but the ordered array of Rh and Pt atoms on the p(3 × 1) surface made by O$_2$ is confirmed to be stabilized by the pinning effect of the sub-surface Pt-layer. When the p(3 × 1) surface is exposed to H$_2$, the surface quickly changes to the p(1 × 1) surface at room temperature. The p(1 × 1) surface was heated in UHV to 600 K and then this p(1 × 1) surface was exposed to O$_2$ at room temperature, the p(3 × 1)Pt–Rh(1 1 0) surface was recovered, that is, the ordered array of Pt and Rh atoms was retained at 600 K. The cyclicvoltammogram of the p(1 × 1) Pt–Rh(1 1 0) surface is very close to that of the Rh(1 1 0) surface [14], which is consistent with the proposed model of the p(3 × 1) surface in Fig. 2.

3. Oxidation of CO and PROX reaction of CO in H$_2$

Since Langmuir [18] first deduced the mechanism for the oxidation of CO with adsorbed oxygen on Pt surface by kinetics, a large number of studies have been performed on Pt catalysts, and Colchet and White [1] experimentally proved the Langmuir mechanism by measuring CO(a) and O(a) on Pt-foil during catalysis. They showed that the amount of CO(a) and O(a) on the Pt surface during catalysis is given by a dynamic balance of the adsorption and the surface reaction. Therefore, if the PCO/P$_2$O$_5$ ratio is changed for constant P$_2$O$_5$, the surface becomes almost clean when the reaction of CO(a) exceeds the adsorption of CO(a), and when higher than this critical ratio of PCO/P$_2$O$_5$, the surface is nearly adsorption equilibrium of CO; whereas when the PCO/P$_2$O$_5$ ratio is lower than the critical value, the surface is covered with O(a). This result clearly shows that the oxidation of CO on Pt is catalysis by category-(i).

According to this mechanism, the oxidation of CO in the presence of H$_2$ on Pt is explained by competitive adsorption and/or competitive reaction of H(a) and CO(a) with O(a). Farrauto and his
coworkers [1] found an increase of selectivity for the oxidation of CO in H2 by adding a small amount of FeOx (5% in Fe) to a Pt/Al2O3 catalyst. They explained this effect of FeOx as a synergistic effect raising the electron density of Pt; that is, a small amount of FeOx deposited on Pt weakens the adsorption of CO which results in the enhancement of CO oxidation. Another unusual improved oxidation of CO was reported by Lambert and his coworkers on Pt(111) surface covered with several monolayers of CeO2 [19]. The oxidation as well as the adsorption of CO was completely suppressed by one monolayer adsorption of CeO2 on the Pt(111) surface as expected, but the oxidation of CO was unexpectedly improved when the Pt surface was covered by more than two layers of CeO2, although no CO adsorption was observed on this CeO2/Pt(111) surface. We speculate that this phenomenon is similar to that observed on Pt-foil when the oxidation reaction exceeds the adsorption of CO(a) at lower than the critical ratio of P_{CO}/P_{O2} shown by White et al., that is, CeO2 becomes very active and the oxidation reaction exceeds the adsorption rate of CO on CeO2/Pt(111).

Another unusual selective oxidation of CO in H2 was found by Tanaka et al. [20] on 1 wt% Pt/TiO2 loaded with a large amount of FeOx (ca. 100 wt%) (FeOx/Pt/TiO2). The preferential oxidation (PROX) of CO was attained at low temperature such as 40°C with very high selectivity. As is discussed in this paper, the oxidation of CO on this FeOx/Pt/TiO2 catalyst in the presence of H2 is entirely different from the oxidation of CO on Pt-catalyst given by category-(1) [21,22]. That is, the PROX reaction on FeOx/Pt/TiO2 is not a competitive reaction of CO(a) and H(a) with O(a).

As shown in Fig. 4(b), the oxidation of CO on FeOx/Pt/TiO2 was markedly enhanced by H2 and/or H2O at 60°C. In contrast, H2O and/or H2 has little effect on the oxidation of CO on 1 wt.% Pt/TiO2 catalyst as shown in Fig. 4(a) [22]. In addition, the oxidation of CO on the FeOx/Pt/TiO2 catalyst showed a marked

![Fig. 2](image)

Fig. 2. (a) LEED pattern of Pt0.25Rh0.75(1 1 0)–O surface changes from p(1 × 1) to p(3 × 1) and finally p(2 × 2)-hex by exposure to O2 at 600 K. (b)-i and (b)-ii are the STM images of a p(3 × 1) Pt0.25Rh0.75(1 1 0)–O surface attained at the same area. In (b)-ii the STM image was abruptly changed. The Pt and (Rh) were distinctive at different bias potentials, and by abrupt change of the tip, (c) is the STM image of c(2 × 20) surface attained by exposing to O2 more than 200 L at 600 K [11].

![Fig. 3](image)

Fig. 3. Catalytic activity of Pt–Rh alloy and bimetal surface for NO (1 × 10⁻⁶ Torr) + H2 (2 × 10⁻⁶ Torr) → N2 reaction. (a) Pt0.25Rh0.75(1 1 0) alloy and Pt/Rh(1 1 0) bimetallic surfaces: (i) p(1 × 1) Pt/Rh(1 1 0) annealed at 1000 K in UHV, (ii) p(3 × 1) Pt/Rh(1 1 0) prepared by heating in 1 × 10⁻⁷ Torr O2 at 780 K, and (iii) Repeat run of (ii). Broken line shows the activity Pt0.25Rh0.75(1 1 0) in a flow of a mixture of 5.8 × 10⁻⁶ Torr NO + 1.6 × 10⁻⁶ Torr H2 at 340 K [14]. (b) NO (1 × 10⁻⁶ Torr) + H2 (2 × 10⁻⁶ Torr) → N2 reaction on Rh(1 1 0) and c(2 × 2)/Pt/Rh(1 1 0) surfaces, and (b)-2 on Pt(1 1 0) and p(1 × 2)/Rh/Pt(1 1 0) [16,17].
hydrogen isotope effect for the oxidation of CO enhanced by H2/D2 or H2O/D2O. Therefore, we conclude confidently that the oxidation of CO enhanced by H2 and/or H2O on FeOx/Pt/TiO2 is different from the oxidation of CO(a) with O(a) so far observed on Pt catalysts.

The hydrogen isotope effect on the oxidation of CO indicates the involvement of hydrogen atom(s) in the rate determining step of the PROX reaction of CO.

If the PROX reaction of CO proceeds according to the equation CO(g) → CO(a) → X(a) → CO2, and step X(a) → CO2 is the rate determining step, and the intermediate X(a) should contain H atom(s). In
this case, the amount of CO(a) as well as X(a) on the catalyst would be high during steady state of the reaction. Accordingly, when the CO is removed from the gas phase, we could expect a large decrease in the amounts of CO(a) and X(a) according to the reaction rate at the rate determining step.

Based on this idea, in situ DRIFT spectra of the FeOx/Pt/TiO2 catalyst in a flow of CO + O2 + H2 were measured by stopping the CO flow in the reactant gas. As shown in Fig. 5(a), a very rapid change in the DRIFT spectra with time was observed at 333 K when the CO was removed from the reactant gas flow. The decreasing rate of CO(a) and X(a) is given by the growth of negative DRIFT peaks, which are obtained by subtracting the steady-state spectrum just before the removal of CO as the background. Therefore, the decrease of intermediates caused by surface reaction or desorption is observed as the growth of negative peaks. The peaks decreasing in Fig. 5(a) are assignable to CO(a) (2069 cm⁻¹), HCOO(a) (1522 cm⁻¹), and OH(a) (3350 cm⁻¹), and the rate of decrease of these DRIFT peaks is very rapid as shown in Fig. 5(b) [20]. The DRIFT spectrum of the FeOx/Pt/TiO2 catalyst in a flow of CO + O2 with no H2 was entirely different from that attained in a flow of CO + O2 + H2. That is, the peaks assignable to bi-carbonate decreased slowly at 333 K as shown in Fig. 5(b).

Based on these results, we confidently conclude that the PROX reaction of CO in the presence of H2 on the FeOx/Pt/TiO2 catalyst is entirely different from the oxidation of CO with O2 in the absence of H2. We suppose that a HCOO intermediate is formed by the reaction of CO with basic OH⁻ anion on the FeOx/Pt/TiO2 catalyst in the presence of H2O. It is worthy of note that formic acid is formed by the reaction of CO with Ca(OH)2, which is an old industrial process. Taking these results into account, we propose a reaction mechanism for the PROX reaction of CO, as shown in Fig. 6(b) where the oxidation of HCOO(a) takes place by OH(a) instead of O(a).

Recently, we developed new active catalysts for the PROX reaction, which are Pt supported on carbon nanotubes (CNT) and on carbon nano-fiber (CNF). The CNT and CNF employed were prepared using Ni–MgO and Ferrocene as catalysts. Therefore, Pt and Ni–MgO or FeOx are separated, such that Pt is on the wall but Ni–MgO and FeOx are localized at the terminal end of the CNT and CNF. Oxidation of CO on the Pt/CNT and Pt/CNF catalysts was markedly enhanced by H2 and/or H2O and showed a hydrogen isotope effect [23]. However, if the Ni–MgO and Fe in the nano-tube or nano-fiber were removed by chemical treatment (denoted as CNT-p and CNF-p), the Pt/CNT-p and Pt/CNF were poorly active catalysts for the PROX reaction as shown in Fig. 6(a) [24,25]. The role of Ni–MgO or Fe–Al2O3 was confirmed by doping Ni–MgO or Fe–Al2O3 onto Pt/graphite and Pt/Vulcan-C. These results suggest that though Pt particles are separated from Ni–MgO, they are indispensable for the PROX reaction catalyst, but the mechanism of enhancement is still unclear [26]. Taking these results into account, we developed an extremely active PROX catalyst for hydrogen fuel cells by doping Ni–MgO onto Pt/Vulcan-C. We succeeded in operating a polymer electrolyte hydrogen fuel cell (PEFC) with H2 containing 1000 ppm of CO for more than 7 h by installing Pt/Vulcan-C doped with Ni–MgO catalyst at room temperature in the hydrogen fuel line [27].

Acknowledgement

This research was financially supported by the National Natural Science Foundation of China (No. 50921064).

References